Simplify the radical expression using the definition.
Problem 1 :
√(4(y - 1)2) Solution
Problem 2 :
∛(-8x3y6) Solution
Problem 3 :
5th root (2x - 1)5 Solution
Problem 4 :
∜(16x8) Solution
Problem 5 :
∛(-27x3) Solution
Problem 6 :
∜(16a12y2) Solution
Problem 7 :
√x / ∛x Solution
Problem 8 :
√(∛x) Solution
Problem 9 :
√(x+7)√(x-7) Solution
Problem 10 :
√50 Solution
Problem 11 :
Add or subtract the following radicals. Write answers in simplified form.
a) 4√3 - 2√3 b) 4√10 + 6√10 - √10 + 2 c) 4√x + √x d) 3√y - 6√y |
e) √x + √y + x + 3√y f) 6√7 - 8√7 g) 12√15 + 5 √15 - 8√15 h) 7√108 - 6√180 |
Example 12 :
Rationalize the denominators and simplify (assume all variables represent positive real numbers).
a) 15/√5 b) √32a5 b3/√2ab2 c) 2/(3 + √5) d) (2 + √5)/(6 - √3) |
e) (1 + √2)/(3 + √5) f) √18a3√18a3 g) √0.121 h) (1 + √0.01)/(1 - √0.1) |
1) 2|y - 1|
2) -2xy2
3) 2x - 1
4) 2x2
5) -3x
6) 2a3 √y
7) x1/6
8) x2/3
9) √(x2 - 72)
10) 5√2
11)
a) 2√3 b) 9√10 + 2 c) 5√x d) - 3√y |
e) √x + x + 4√y f) -2√7 g) 9√15 h) 42√3 - 36√5 |
12)
a) 3√5 b) 4a2b√b c) (3 - √5) / 2 d) (12 + 2√3 + 6√5 + √15) / 33 |
e) (3 - √5 + 3√2 - √10) / 4 f) 18a3 g) 1.1/√10 h) (1.1 + √0.1 + 0.1/√10) / 0.9 |
Simplify radical expressions
Problem 1 :
3√6 - 4√6
Problem 2 :
-3√7 + 4√7
Problem 3 :
-11√21 - 11√21
Problem 4 :
-9√15 + 10√15
Problem 5 :
-10√7 + 12√7
Problem 6 :
-3√17 - 4√17
Problem 7 :
-10√11 - 11√11
Problem 8 :
-2√3 + 3√27
Problem 9 :
2√6 - 2√24
Problem 10 :
2√6 + 3√54
Problem 11 :
-√12 + 3√3
Problem 12 :
3√3 - √27
Problem 13 :
3√8 + 3√2
Problem 14 :
-3√6 + 3√6
Problem 15 :
Problem 16 :
Problem 17 :
Problem 18 :
Problem 19 :
What are the perimeter and area of a rectangle with length of 5√3 cm and width of 3√2 cm ?
Problem 20 :
The sum of 2√8, 4√50 and 3√18 is
Problem 21 :
The difference between (1/2) √180 and (2/5) √20
1) -√6 2) √7 3) -22√21 4) √15 5) 2√7 6) -7√17 7) -21√11 8) 7√3 9) -2√6 10) 11√6 |
11) √3 12) 0 13) 9√2 14) 0 15) the perimter of the triangle is 12√17. 16) the perimeter of the triangle is 21√13. 17) the perimeter of the triangle is 21√13. 18) the perimeter of the quadrilateral is 60√7 19) 15√6 cm2 20) 33√2 21) 11√5/5 |
Practice on adding and subtracting radicals.
Problem 1 :
5√6 + 3√6
Problem 2 :
4√20 - 2√5
Problem 3 :
3√(32x2) + 5x√8
Problem 4 :
7√4x2 + 2√25x - √16x
Problem 5 :
5∛x2y + ∛27x5y4
Problem 6 :
3√9y3 - 3y√16y + √25y3
Problem 7 :
√(248 + (√(51 + √169))
Problem 8 :
If a * b * c = √(a + 2) (b + 3) / (c + 1) then find the value of 6 * 15 * 3
Problem 9 :
What will come in the place of question mark in each of the following :
i) √(32.4/?) = 2
ii) √86.49 + √(5 + ?2) = 12
Problem 10 :
If √1 + (x/144) = 13/12, find the value of x
Problem 11 :
If x = 1 + √2 and y = 1 - √2, find the value of x2 + y2
Problem 12 :
√(10 + (√25 + (√108 + (√154 + (√225))))) is
1) 8√6
2) 6√5
3) 22x√2
4) 14x + 6√x
5) (5 + 3xy) ∛x2y
6) 2y√y
7) the value of the expression √(248 + (√(51 + √169)) is 16.
8) 3
9) i) the value of x is 8.1.
ii) x = 2
10) 6
11) 4
Problem 1:
√36
Problem 2 :
√4
Problem 3 :
√64
Problem 4 :
√144
Problem 6 :
-√100
Problem 7 :
-√1
Problem 8 :
-√121
Problem 9 :
√-36
Problem 10 :
√-9
Problem 11 :
√-49
Problem 12:
√(9 + 16)
Problem 13:
√25 + 144
Problem 14 :
√9 + √16
Problem 15 :
√25 + √144
Problem 16 :
Find the square root of 6400
Problem 17 :
Is 2352 a perfect square? If not find the smallest multiple of 2352 which is a perfect square. Find the sqaure root of the new number.
Problem 18 :
2116 plants are to be planted in a garden in such a way that each row contains as many plants as the number of rows. Find the number of rows and the number of plants in each row.
Problem 19 :
A natural number is called a _________ or _____________ if it is the square of some natural numbers
Problem 20 :
Simplify √0.09
Problem 21 :
Find the length of the side of a square whose area is 441 m2
1) 6
2) 2
3) 8
4) 12
5) -2
6) -10
7) -1
8) -11
9) no real roots.
10) no real roots.
11) no real roots
12) 5
13) 13
14) 7
15) 17
16) 80
17) 28
18) 46
19) perfect square or square of number
20) 0.3
21) the side length of square is 21 m
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM