SIMPLIFYING RADICAL EXPRESSIONS WORKSHEET

Simplify the radical expression using the definition.

Problem 1 :

√(4(y - 1)2)             Solution

Problem 2 :

∛(-8x3y6)          Solution

Problem 3 :

5th root (2x - 1)5          Solution

Problem 4 :

 ∜(16x8)          Solution

Problem 5 :

(-27x3)          Solution

Problem 6 :

 ∜(16a12y2)          Solution

Problem 7 :

√x / ∛x          Solution

Problem 8 :

√(∛x)          Solution

Problem 9 :

√(x+7)√(x-7)          Solution

Problem 10 :

√50          Solution

Problem 11 :

Add or subtract the following radicals. Write answers in simplified form. 

a)  4√3 - 2√3

b) 4√10 + 6√10 - √10 + 2

c) 4√x + √x

d) 3√y - 6√y

e) √x + √y + x + 3√y

f) 6√7 - 8√7

g) 12√15 + 5 √15 - 8√15

h) 7√108 - 6√180

Solution

Example 12 :

Rationalize the denominators and simplify (assume all variables represent positive real numbers).

a)  15/√5

b) √32a5 b3/√2ab2

c)  2/(3 + √5)

d)  (2 + √5)/(6 - √3)

e)  (1 + √2)/(3 + √5)

f)  √18a3√18a3

g)  √0.121

h)  (1 + √0.01)/(1 - √0.1)

Solution

1)  2|y - 1|

2)  -2xy2

3) 2x - 1

4)  2x2

5) -3x

6)  2a√y 

7)  x1/6

8)  x2/3

9)  √(x2 - 72)

10)  5√2

11) 

a)  2√3

b)  9√10 + 2

c)  5√x

d)   - 3√y

e)  √x + x + 4√y

f)  -2√7

g)  9√15

h)  42√3 - 36√5

12)

a)  3√5

b)  4a2b√b

c)  (3 - √5) / 2

d)  (12 + 2√3 + 6√5 + √15) / 33

e)  (3 - √5 + 3√2 - √10) / 4

f)  18a

g)  1.1/√10

h)  (1.1 + √0.1 + 0.1/√10) / 0.9

Simplify radical expressions

Problem 1 :

3√6 - 4√6

Solution

Problem 2 :

-3√7 + 4√7

Solution

Problem 3 :

-11√21 - 11√21

Solution

Problem 4 :

-9√15 + 10√15

Solution

Problem 5 :

-10√7 + 12√7

Solution

Problem 6 :

-3√17 - 4√17

Solution

Problem 7 :

-10√11 - 11√11

Solution

Problem 8 :

-2√3 + 3√27

Solution

Problem 9 :

2√6 - 2√24

Solution

Problem 10 :

 2√6 + 3√54

Solution

Problem 11 :

 -√12 + 3√3

Solution

Problem 12 :

3√3 - √27

 Solution

Problem 13 :

 3√8 + 3√2

Solution

Problem 14 :

-3√6 + 3√6

Solution

Problem 15 :

add-and-sub-radicals-q1

Solution

Problem 16 :

add-and-sub-radicals-q2.png

Solution

Problem 17 :

add-and-sub-radicals-q3.png

Solution

Problem 18 :

add-and-sub-radicals-q4.png

Solution

Problem 19 :

What are the perimeter and area of a rectangle with length of 5√3 cm and width of 3√2 cm ?

Solution

Problem 20 :

The sum of 2√8, 4√50 and 3√18 is

Solution

Problem 21 :

The difference between (1/2) √180 and (2/5) √20

Solution

Answer Key

1)  -√6

2)  √7

3)  -22√21

4)  √15

5)  2√7

6)   -7√17

7)  -21√11

8)  7√3

9)  -2√6

10)  11√6

11)  √3

12)  0

13)  9√2

14)  0

15)  the perimter of the triangle is 12√17.

16)  the perimeter of the triangle is 21√13.

17)  the perimeter of the triangle is 21√13.

18)   the perimeter of the quadrilateral is 60√7

19)  15√6 cm2

20) 33√2

21)  11√5/5

Practice on adding and subtracting radicals.

Problem 1 :

5√6 + 3√6

Solution

Problem 2 :

4√20 - 2√5

Solution

Problem 3 :

3√(32x2) + 5x√8

Solution

Problem 4 :

7√4x2 + 2√25x - √16x

Solution

Problem 5 :

5∛x2y + ∛27x5y

Solution

Problem 6 :

3√9y3 - 3y√16y + √25y3

Solution

Problem 7 :

√(248 + (√(51 + √169))

Solution

Problem 8 :

If a * b * c = √(a + 2) (b + 3) / (c + 1) then find the value of 6 * 15 * 3

Solution

Problem 9 :

What will come in the place of question mark in each of the following :

i)  √(32.4/?) = 2

ii)  √86.49 + √(5 + ?2) = 12

Solution

Problem 10 :

If √1 + (x/144) = 13/12, find the value of x

Solution

Problem 11 :

If x = 1 + √2 and y = 1 - √2, find the value of x2 + y2

Solution

Problem 12 :

√(10 + (√25 + (√108 + (√154 + (√225))))) is 

Solution

Answer Key

1)  8√6

2)  6√5

3) 22x√2

4)   14x + 6√x

5)   (5 + 3xy) ∛x2y

6) 2y√y

7)  the value of the expression √(248 + (√(51 + √169)) is 16.

8)  3

9)  i)  the value of x is 8.1.

ii)  x = 2

10)   6

11)   4

Problem 1:

√36

Solution

Problem 2 :

√4

Solution

Problem 3 :

√64

Solution

Problem 4 :

√144

Solution

Problem 6 :

-√100

Solution

Problem 7 :

-√1

Solution

Problem 8 :

-√121

Solution

Problem 9 :

√-36

Solution

Problem 10 :

√-9

Solution

Problem 11 :

√-49

Solution

Problem 12:

√(9 + 16)

Solution

Problem 13:

√25 + 144

Solution

Problem 14 :

√9 + √16

Solution

Problem 15 :

√25 + √144

Solution

Problem 16 :

Find the square root of 6400

Solution

Problem 17 :

Is 2352 a perfect square? If not find the smallest multiple of 2352 which is a perfect square. Find the sqaure root of the new number.

Solution

Problem 18 :

2116 plants are to be planted in a garden in such a way that each row contains as many plants as the number of rows. Find the number of rows and the number of plants in each row.

Solution

Problem 19 :

A natural number is called a _________ or _____________ if it is the square of some natural numbers 

Solution

Problem 20 :

Simplify √0.09

Solution

Problem 21 :

Find the length of the side of a square whose area is 441 m2

Solution

Answer Key

1) 6

2)  2

3)  8

4)  12

5)  -2

6)  -10

7)  -1

8)  -11

9)  no real roots.

10)  no real roots.

11)  no real roots

12)  5

13) 13

14)  7

15)  17

16)  80

17)  28

18)  46

19)  perfect square or square of number

20)  0.3

21)   the side length of square is 21 m

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More