LAWS OF EXPONENTS

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

Laws of Exponent

Instead of writing the repeating the same, we can use the exponents

Example Problems on Laws of Exponents

Simplify each of the following.

Problem 1 :

โ‹… a2 โ‹… a3

Solution :

= a โ‹… a2 โ‹… a3

Since the base is same for all three terms, we use only one base and add the powers.

= a(1+2+3)

= a6

Problem 2 :

(2 a2 b) โ‹… (4ab2)

Solution :

= (2 a2 b) โ‹… (4ab2)

Multiplying the coefficients = 2 x 4 ==> 8

Multiplying a related terms = a2โ‹… a = a3

Multiplying b related terms = b โ‹… b2 = b3

Since the base is same for all three terms, we use only one base and add the powers.

= 8a3b3

Problem 3 :

(6x2) โ‹… (-3x5)

Solution :

= (6x2) โ‹… (-3x5)

= -18 x2+5

= -18x7

Problem 3 :

(6x2) โ‹… (-3x5)

Solution :

= (6x2) โ‹… (-3x5)

= -18 x2+5

= -18x7

Problem 4 :

(2x2 y3)2 

Solution :

= (2x2 y3)2 

Distributing the power, we get

22 (x2) (y3)2 

= 22 x4 y6 

= 4x4 y6 

Problem 5 :

Solution :

Rules with Negative Exponent

(-4)2 and -42 are same ?

No, there is a difference between (-4)2 and -42.

In (-4)2, order of operations (PEMDAS) says to take first.

(-4)= (-4) โ‹… (-4)

(-4)= 16

Without parentheses, exponents take precedence :

-4= -4 โ‹… 4

-4= -16

Sometimes, the result will be same as in (-2)3 and -23.

For a negative number with odd exponent, the result is always negative.

Problems with Negative Exponents

Problem 6 :

Find the value of (i) 4-3 (ii) 1/2-3 (iii) (-2)5 x (-2)-3 (iv) 32/3-2.

Solution :

(i) 4-3 :

= 1/43

= 1/(4 x 4 x 4)

= 1/64

(ii) 1/2-3 :

= 23

= 2 x 2 x 2

= 8

(iii) (-2)5 x (-2)-3 :

= (-2)5 - 3

= (-2)2

= -2 x -2

= 4

(iv) 32/3-2 :

= 32/3-2

= 32 x 32

= 9 x 9

Problem 7 :

Simplify and write the answer in exponential form: 

(i) (3รท 38)5 x 3-5 (ii) (-3)x (5/3)4

Solution :

(i) (3รท 38)5 x 3-5 :

= (35 - 8)5 x 3-5

= (3-3)5 x 3-5

= 3-3 x 5 x 3-5

= 3-15 x 3-5

= 3-15 - 5

= = 3-20

(ii) (-3)x (5/3)4 :

= 3x 54/34

= 54

Problem 8 :

Find x so that (-7)x + 2 x (-7)5 = (-7)10.

Solution :

(-7)x + 2 x (-7)5 = (-7)10

(-7)x + 2 + 5 = (-7)10

(-7)x + 7 = (-7)10

Since the bases are equal, we can equate the exponents. 

x + 7 = 10

Subtract 7 from each side.

x = 3

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More