SIMPLIFY RADICAL EXPRESSIONS

If n is even number, then nth root of the negative number is not real.

  • If we have square root, for every two values or variables inside the square we can take one out of it.
  • If we have cube root, for every three values or variables inside the cube root, we can take one out of it.
  • If we have fourth root, for every four values or variables inside the fourth root, we can take one out of it.

Simplify the radical expression using the definition.

Example 1 :

√(4(y - 1)2)

Solution :

= 2|y - 1|

Example 2 :

∛(-8x3y6)

Solution :

= 3-8x3y6= 3(-2)3x3y23= 3-2xy23= -2xy2

Example 3 :

5th root (2x - 1)5

Solution :

= 5(2x-1)5= (2x-1)515= (2x-1)5 × 15= (2x - 1)

Example 4 :

∜(16x8)

Solution :

= 416x8= 424x8= 424x24= 42x24= 2x

Example 5 :

(-27x3)

Solution :

= 3-27x3= 3(-3)3x3= 3(-3x)3= -3x

Example 6 :

∜(16a12y2)

Solution :

= 416a12y2= 424a34y2= 42a34y2= 2a34y2= 2a34(y )= 2a3

Example 7 :

√x / ∛x

Solution :

= x12x13= =

Example 8 :

√(∛x)

Solution :

Example 9 :

√(x + 7)√(x - 7)

Solution :

= √(x + 7)√(x - 7)

= √(x + 7)(x - 7)

Here (x+7)(x-7) looks like (a + b) (a - b) = a2 - b2

= √(x + 7)(x - 7)

= √(x2 - 72)

Example 10 :

√50

Solution :

√50

Decomposing 50 into prime factors, we get

= √(5 ⋅ 5 ⋅ 2)

= 5√2

Example 11 :

Add or subtract the following radicals. Write answers in simplified form. 

a)  4√3 - 2√3

b) 4√10 + 6√10 - √10 + 2

c) 4√x + √x

d) 3√y - 6√y

e) √x + √y + x + 3√y

f) 6√7 - 8√7

g) 12√15 + 5 √15 - 8√15

h) 7√108 - 6√180

Solution :

a)  4√3 - 2√3

Subtracting these two, we get

= 2√3

b) 

4√10 + 6√10 - √10 + 2

= 10√10 - √10 + 2

= 9√10 + 2

c)

= 4√x + √x

= 5√x

d) 

3√y - 6√y

= - 3√y

e)

= √x + √y + x + 3√y

= √x + x + √y + 3√y

= √x + x + 4√y

f)

= 6√7 - 8√7

= -2√7

g)

= 12√15 + 5√15 - 8√15

= 17√15 - 8√15

= 9√15

h)

= 7√108 - 6√180

Decomposing 108 and 180.

prime-factorisation-of-108-180.png

= 7√(2 x 2 x 3 x 3 x 3) - 6√(2 x 2 x 3 x 3 x 5)

= 7 x 2 x 3√3 - 6 x 2 x 3 √5

= 42√3 - 36√5

Example 12 :

Rationalize the denominators and simplify (assume all variables represent positive real numbers).

a)  15/√5

b) √32a5 b3/√2ab2

c)  2/(3 + √5)

d)  (2 + √5)/(6 - √3)

e)  (1 + √2)/(3 + √5)

f)  √18a3√18a3

g)  √0.121

h)  (1 + √0.01)/(1 - √0.1)

Solution :

a)  15/√5

Multiplying the numerator and denominator by √5, we get

= (15/√5) ⋅ (√5/√5)

= 15√5/5

= 3√5

b) √32a5 b3/√2ab2

= √(2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ a5 ⋅ b3)/√2ab2

= 4a2b√(2ab)/b√2a

= 4a2b√b

c)  2/(3 + √5)

= [2/(3 + √5)] ⋅ [(3 - √5) / (3 + √5)]

= 2⋅ (3 - √5) /(3 + √5) (3 + √5)

= (6 - 2√5) / (32 - √52)

= (6 - 2√5) / (9 - 5)

= (6 - 2√5) / 4

= (3 - √5) / 2

d)  (2 + √5)/(6 - √3)

= (2 + √5)/(6 - √3) ⋅ [(6 + √3) / (6 + √3)]

= (2 + √5)(6 + √3) / (6 - √3) (6 + √3)

= (12 + 2√3 + 6√5 + √15) / (62 - √32)

= (12 + 2√3 + 6√5 + √15) / (36 - 3)

= (12 + 2√3 + 6√5 + √15) / 33

e)  (1 + √2)/(3 + √5)

(1 + √2)/(3 + √5) ⋅ [(3 - √5) / (3 - √5)]

(1 + √2)(3 - √5) / (3 + √5)(3 - √5)

(3 - √5 + 3√2 - √10) / (32 - √52)

(3 - √5 + 3√2 - √10) / (9 - 5)

(3 - √5 + 3√2 - √10) / 4

f)  √18a3√18a3

= √(18a⋅ 18a3)

= 18a

g)  √0.121

= √0.121 (1000/1000)

√(0.121 ⋅ 1000)/√1000

= √121/√1000

= 11/10√10

= 1.1/√10

h)  (1 + √0.01)/(1 - √0.1)

= (1 + √0.01)/(1 - √0.1) [(1 + √0.1)/(1 + √0.1)]

= (1 + √0.01)(1 + √0.1) / (1 - √0.1)(1 + √0.1)

= (1 + √0.1 + 0.1 + 0.1/√10) / 0.9

= (1.1 + √0.1 + 0.1/√10) / 0.9

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More