EXPONENTS RULES WORKSHEET

Product Rule of Exponents 

Problem 1 :

a ⋅ a⋅ a3

Solution

Problem 2 :

(2a2b)(4ab2)

Solution

Problem 3 :

(6x2)(-3x5)

Solution

Problem 4 :

b3 ⋅ b4 ⋅ b7⋅ b

Solution

Problem 5 :

(3x3) (3x4) (-3x2)

Solution

Problem 6 :

(-5)-10 ⋅ (-5)15

Solution

Problem 7 :

(4/5)-6 ⋅ (4/5)-9

Solution

Problem 8 :

(1.4)-12 ⋅ (1.4)5

Solution

Problem 9 :

(-7/6)-6 ⋅ (-7/6)3

Solution

Problem 10 :

(-13)0 ⋅ (-13)-19

Solution

Problem 11 :

8-14 ⋅ 84

Solution

Problem 12 :

10⋅ 10-9 = 1011

Solution

Problem 13 :

(-8/7)-x⋅(-8/7)-15=(-8/7)-10

Solution

Problem 14 :

(-2.9)-13⋅(-2.9)x = (-2.9)-5

Solution

Problem 15 :

The human body has about 100 billion cells. This number can be written in exponential form as

(a) 10–11      (b) 1011     (c) 109    (d) 10–9

Solution

Problem 16 :

(-2)⋅ (-2)7 / (3 ⋅ 46)

Solution

Problem 17 :

The value of (–2)2×3 –1 is

(a) 32     (b) 64    (c) – 32     (d) – 64

Solution

Problem 18 :

(2-1 + 4–1 + 6–1 + 8–1)= 1

Solution

Problem 19 :

Find the value of x–3 if x = (100)1 - 4 ÷ (100)0

Solution

Problem 20 :

By what number should we multiply (–29)0 so that the product becomes (+29)0.

Solution

Problem 21 :

By what number should (–15)–1 be divided so that quotient may be equal to (–15)–1?

Solution

Problem 22 :

Find the multiplicative inverse of (–7)–2 ÷ (90)–1

Solution

Problem 23 :

If 53x–1 ÷ 25 = 125, find the value of x.

Solution

Answer Key

1)  a6

2)  8a3b3

3)  -18x7

4)  b15

5)  27x9

6)  -3125

7)  28.421

8)  0.09486

9)  -0.6406

10)  -6.84013

11)  9.313

12)  x = 20

13)  x = 5

14)  x = 8

15)  1011

16)  1/12

17)  -32

18)  x = 0

19)  x-3 = 1018

20)  (+29)0

21) 1

22)  49/90

23)  x = 2

Problem 1 :

(x3)/x

Solution

Problem 2 :

(18c3)/(-3c2)

Solution

Problem 3 :

(9a3b5)/(-3ab2)

Solution

Problem 4 :

(-48c2d4)/(-8cd)

Solution

Problem 5 :

(22y6z8)/2yz-7

Solution

Problem 6 :

(2x3)/(-8x4)

Solution

Problem 7 :

(xy7)/x3y4

Solution

Problem 8 :

6x⋅ 3x⋅ x0

Solution

Problem 9 :

(3st12)3

Solution

Problem 10 :

[(3m2n7)/m]5

Solution

Problem 11 :

(20x-4/27y2÷ (8x-3/15y-5)

Solution

Simplify the expression. Write your answer as a power.

Problem 12 :

(75 ⋅ 73)/72

Solution

Problem 13 :

(2.5)11 / (2.5)-x = (2.5)15

Solution

Problem 14 :

(-4/5)18 ÷ (-4/5)-x = (-4/5)14

Solution

Problem 15 :

The table shows the volumes of the largest gaint sequoia trees. Which tree has the greatest volume ? How much greater is its volume than the other tree ?

quotient-rule-p1

Solution

Problem 16 :

A byte is a unit used to measure a computer’s memory. The table shows the numbers of bytes in several units of measure

quotient-rule-p2.png

a. How many kilobytes are in 1 terabyte?

b. How many megabytes are in 16 gigabytes?

c. Another unit used to measure a computer’s memory is a bit. There are 8 bits in a byte. How can you convert the number of bytes in each unit of measure given in the table to bits? Can you still use a base of 2? Explain.

Solution

Problem 17 :

Consider Cube A and Cube B.

quotient-rule-p3.png

a. Which property of exponents should you use to simplify an expression for the volume of each cube?

b. How can you use the Power of a Quotient Property to find how many times greater the volume of Cube B is than the volume of Cube A?

Solution

Answer Key

1)  x2

2)  -6c

3)  -3a2b3

4)  6cd3

5)  11y5z14

6)  -1/4x-1

7)   x-2y3

8)  18x10

9)  27s3t36

10)  243m5n35

11)  25/18 x-1y-7

12)  76

13)  x = 4

14)  x = -4

15)  General sherman is 1.09 times heavier than Washington.

16)  a)  230     b)  16384      c)  we can multiply the number of bytes by 8.

17)  a)  Using the product rule, we evaluate the volumes of each cubes.

b)  Using quotient rule, we find the number of times.

Power Rule of Exponents

Simplify :

Problem 1 :

 (-2x4y4)2

Solution

Problem 2 :

(-a4b3)3

Solution

Problem 3 :

(-x3)2

Solution

Problem 4 :

(4a4b2)2

Solution

Problem 5 :

(yx2)3

Solution

Problem 6 :

(-4nm4)4

Solution

Problem 7 :

 (a4)2

Solution

Problem 8 :

 (-4y4)3

Solution

Problem 9 :

 (-3y3)3

Solution

Problem 10 :

 (-2x2)3

Solution

Problem 11 :

(-3xy3)4

Solution

Problem 12 :

(-2y2)2

Solution

Problem 13 :

(3y)3

Solution

Problem 14 :

(-2yx4)2

Solution

Problem 15 :

Evaluate the expression : -22 + (-3)2

Solution

Problem 16 :

Evaluate the expression : 

(48 ⋅ m7⋅ n4)/(45 ⋅ m2)

Solution

Problem 17 :

(92) 1/3

Solution

Problem 18 :

(122) 1/4

Solution

Problem 19 :

6/(61/4)

Solution

Problem 20 :

7/(71/3)

Solution

Problem 21 :

(84/104)-1/4

Solution

Problem 22 :

(93/63)-1/3

Solution

Problem 23 :

(3-2/3⋅ 31/3)-1

Solution

Problem 24 :

(51/2 ⋅ 5-3/2)-1/4

Solution

Problem 25 :

(22/3 ⋅ 162/3) / 42/3

Solution

Problem 26 :

(493/8 ⋅ 497/8) / 75/4

Solution

Problem 27 :

Write (22)3 × 36 in simplified exponential form.

Solution

Problem 28 :

Find the value of x if [(3/7)3]-2 = (3/7)2x 

Solution

Problem 29 :

Find the value of x if (-7/11)-3 (-7/11)-5x= [(-7/11)-2]-1

Solution

Problem 30 :

Find the value of x if (3/7)-2x+1 ÷ (3/7)-1 = [(3/7)-1]-7

Solution

Problem 31 :

Find the value of x if 22x - 3 = (64)x, find the value of x.

Solution

Answer Key

1)  4x8y8

2)   -a12b9

3)  -x6

4)  16a8b4

5)  y3x6

6)  256n4m16

7)  a8

8)  -64y12

9)   -27y9

10)  -8x6

11)  81x4y12

12)  4y4

13)   27y3

14)   4y2x8

15)  5

16)   43  m5 n4

17)  34/3

18)  2√3

19)  63/4

20)  72/3

21) 5/4

22)   2/3

23)  3(1/3)

24)  5(1/4)

25)  4

26)  75/4

27)  66

28)  x = -3

29)  x = 1/5

30)  x = -3

31)  x = -3/4

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More