WORKSHEET ON BOUNDED AND UNBOUNDED INTERVALS

Problem 1 :

Convert interval notation to inequality notation or vice versa. Find the endpoints and state whether the interval is bounded, its type, and graph the interval.

(a)  [-6, 3)

(b)  (-, -1)

(c)  -2 ≤ x  3

Solution

Problem 2 :

Describe and graph the interval of real numbers.

(i) x ≤ 2

(ii) -2 ≤ x < 5

Solution

Problem 3 :

Write the following as interval notation :

(i) (-, 7)

(ii) [-3, 3]

(iii)  x is negative 

(iv) x is greater than or equal to 2 and less than or equal to 6.

Solution

Problem 4 :

Solution

Problem 5 :

Convert to inequality notation. Find the endpoints and state whether the interval is bounded or unbounded and its type.

(i) (-3, 4]

(ii)  (-3, -1)

(iii)  (-∞, 5)

(iv)  [-6, ∞)

Solution

Answer Key

1)

(a) It has endpoints -6 and 3.

Inequality Notation :

The possible values are -6 ≤ x < 3. 

Graph :

Type of interval :

It is bounded.

(b)  (-, -1)

Endpoints :

It has the endpoint -1.

Inequality Notation :

The possible values are x < -1. 

Graph :

Type of interval :

It is unbounded.

(c)  -2 ≤ x  3

Endpoints :

-2 and 3 are the endpoints.

Inequality Notation :

The possible values are -2 ≤  3. 

Graph :

Type of interval :

It is bounded.

2)   (i) x ≤ 2

(ii) -2 ≤ x < 5

3)

(i) (-, 7) ==> -∞< x < 7

(ii) [-3, 3] ==> -3 ≤ x ≤ 3

(iii)  x is negative ==>  x < 0

(iv) x is greater than or equal to 2 and less than or equal to 6.

≥ 2 and x ≤ 6

4)   (i) (-∞, 5)       (ii)  [-2, 2)        (iii)  (-1,∞)    (iv) [-3, 0] 

5)  i) (-3, 4]

Inequality notation :

-3 < x  ≤ 4

Endpoints :

-3 and 4 are endpoints.

Bounded : Half open

(ii)  (-3, -1)

Inequality notation :

-3 < x < -1

Endpoints :

-3 and -1 are endpoints.

Bounded: Open

(iii)  (-∞, 5)

Inequality notation :

x < 5

Endpoints :

End point is 5.

Unbounded : Open

(iv)  [-6, ∞)

Inequality notation :

-6 < x < 

Endpoints :

Endpoint is -6

Unbounded : Half open

CONVERT INEQUALITIES TO INTERVAL NOTATION WORKSHEET

Write these number sets using interval notation :

Problem 1 :

{x│-1 ≤ x ≤ 6}

Solution

Problem 2 :

{x│ 0 < x < 5}

Solution

Problem 3 :

{x│-4 < x ≤ 7}

Solution

Problem 4 :

{x│ 4 ≤ x < 8}

Solution

Problem 5 :

{x│ x ≤ 2 or x ≥ 5}

Solution

Problem 6 :

 {x│ x < -3 or x > 4}

Solution

Problem 7 :

 {x│ -1 < x ≤ 1 or x ≥ 2}

Solution

Problem 8 :

 {x│ x < -4 or 2 ≤ x < 7}

Solution

Answer Key

1)  [1, 6]

convertinequtointervalnotaq1.png

2)  (0, 5).

convertinequtointervalnotaq2

3)  (-4, 7]

convertinequtointervalnotaq3

4)  [4, 8)

convertinequtointervalnotaq4

5)  (-∞,2] υ [5, ∞)

convertinequtointervalnotaq5

6)   (-∞, 3) υ (4, ∞).

convertinequtointervalnotaq6

7)   (-1, 1] υ [2, ∞)

convertinequtointervalnotaq7

8)  (-∞, 4) υ [2, 7).

convertinequtointervalnotaq8

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More