SUM OF INFINITE GEOMETRIC SERIES WORKSHEET

How to Find Sum of Infinite Geometric Series ?

Formula to find the sum of infinite geometric series :

S = a1/(1 - r),    if -1 < r < 1

where 'a1' is the first term of the series and 'r' is the common ratio.

r = second term/first term or a2/a1

Note :

In an infinite geometric series, if the value of r is not in the interval -1 < r < 1, then the sum does not exist.

Find these sums to infinity, where they exist.

Problem 1 :

80 + 20 + 5 + 1.25 + …

Solution

Problem 2 :

180 – 60 + 20 – 20/3 + …

Solution

Problem 3 :

2 + 1.98 + 1.9602 + …

Solution

Problem 4 :

-100 + 110 – 121 + …

Solution

Problem 5 :

1/10 + 1/100 + 1/1000 + …

Solution

Answer Key

1)  320/3

2)  S = 135

3)  200

4) Does not exists

5)  1/9

Problem 1 :

Express 0.37373737… as an infinite geometric series and find the fraction it represents.

Solution

Problem 2 :

0.52525252…

Solution

Problem 3 :

0.358358358…

Solution

Problem 4 :

0.194949494…

Solution

Answer Key

1) 37/99

2)  52/99

3) 358/999

4) 193/990

Convert the following recurring decimals to fractions :

Problem 1 :

0.333….

Solution

Problem 2 :

0.444….

Solution

Convert the following recurring decimals to fractions:

Problem 3 :

1.0909….

Solution

Problem 4 :

2.0909….

Solution

Problem 5 :

0.5333….

Solution

Problem 6 :

1.7333….

Solution

Problem 7 :

0.9444….

Solution

Problem 8 :

2.0555…

Solution

Answer Key

1)  1/3

2)  4/9

3)  108/99

4)  207/99

5)  48/90

6)  156/90

7)  85/90

8)  185/90

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More