Formula to find the sum of infinite geometric series :
S∞ = a1/(1 - r), if -1 < r < 1
where 'a1' is the first term of the series and 'r' is the common ratio.
r = second term/first term or a2/a1
Note :
In an infinite geometric series, if the value of r is not in the interval -1 < r < 1, then the sum does not exist.
Find these sums to infinity, where they exist.
Problem 1 :
80 + 20 + 5 + 1.25 + …
Problem 2 :
180 – 60 + 20 – 20/3 + …
Problem 3 :
2 + 1.98 + 1.9602 + …
Problem 4 :
-100 + 110 – 121 + …
Problem 5 :
1/10 + 1/100 + 1/1000 + …
1) 320/3
2) S∞ = 135
3) 200
4) Does not exists
5) 1/9
Problem 1 :
Express 0.37373737… as an infinite geometric series and find the fraction it represents.
Problem 2 :
0.52525252…
Problem 3 :
0.358358358…
Problem 4 :
0.194949494…
1) 37/99
2) 52/99
3) 358/999
4) 193/990
Convert the following recurring decimals to fractions :
Problem 1 :
0.333….
Problem 2 :
0.444….
Convert the following recurring decimals to fractions:
Problem 3 :
1.0909….
Problem 4 :
2.0909….
Problem 5 :
0.5333….
Problem 6 :
1.7333….
Problem 7 :
0.9444….
Problem 8 :
2.0555…
1) 1/3
2) 4/9
3) 108/99
4) 207/99
5) 48/90
6) 156/90
7) 85/90
8) 185/90
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM