Problem 1 :
Express 0.37373737… as an infinite geometric series and find the fraction it represents.
Solution :
Let x = 0.37373737…
Writing the given repeating decimal as sum of smaller units of repeating decimals, we get
= 0.37 + 0.0037 + 0.000037 + …
= 37/100 + 37/10000 + 37/1000000 + …
= 37/100 + 37/100(1/100) + 37/100(1/100)2 + …
a = 37/100 and r = 1/100
What fractions do these decimals represent?
Problem 2 :
0.52525252…
Solution :
Let x = 0.52525252…
= 0.52 + 0.0052 + 0.000052 + …
= 52/100 + 52/10000 + 52/1000000 + …
= 52/100 + 52/100(1/100) + 52/100(1/100)2 + …
a = 52/100, r = 1/100
Problem 3 :
0.358358358…
Solution :
Let x = 0.358358358…
= 0.358 + 0.000358 + 0.000000358 + …
= 358/1000 + 358/1000000 + 358/100000000 + …
= 358/1000 + 358/1000(1/1000) + 358/1000(1/1000)2 + …
a = 358/1000, r = 1/1000
x = 358/999
So, the fraction is 358/999.
Problem 4 :
0.194949494…
Solution :
Let x = 0.194949494…
= 0.1 + 0.094 + 0.00094 + 0.0000094 + …
= 0.1 + 0.094[1 + 10-2 + 10-4 + …]
= 0.1 + 0.094[1/(1 – 10-2)]
= 0.1 + 0.094[102/99]
= 0.1 + 0.094[100/99]
= 1/10 + 94/1000 ×100/99
= 1/10 + 47/5 ×1/99
=1/10 + 47/495
= (1/10) × 99/99 + 47/495 × 2/2
= 99/990 + 94/990
= (99 + 94)/990
= 193/990
So, the fraction is 193/990.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM