FINDING UNKNOWN ANGLES IN RHOMBUS WORKSHEET

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Find the all numbered angles in the following rhombus.

Problem 1 :

Solution

Problem 2 :

Solution

Problem 3 :

Solution

Problem 4 :

Solution

Problem 5 :

Solution

Problem 6 :

Solution

Problem 7 :

Solution

Problem 8 :

Solution

Problem 9 :

Solution

Problem 10 :

Solution

Problem 11 :

for any rhombus JKLM, decide whether the statement is always or sometimes true. Draw a diagram and explain your reasoning.

a) ∠L ≅ ∠M

b)∠K ≅ ∠M

c) JM ≅  KL

d) JK ≅ KL

e) JL ≅ KM

f) ∠JKM ≅ ∠LKM

Solution

Problem 12 :

Name each quadrilateral parallelogram, rectangle, rhombus, or square for which the statement is always true.

a) It is equiangular.

b) It is equiangular and equilateral.

c) The diagonals are perpendicular.

d) Opposite sides are congruent.

e) The diagonals bisect each other.

f) The diagonals bisect opposite angles.

Solution

Problem 13 :

Given a quadrilateral ABCD, and diagonals AC and BD bisect each other at P such that AP = CP and BP = DP. Also ∠APD = 90°, then quadrilateral is a

(a) rhombus      (b) trapezium     (c) parallelogram     (d) rectangle

Solution

Answer Key

1)  ∠1 = 53.5, ∠2 = 53.5, ∠3 = 53.5, ∠4 = 53.5

2)  ∠1 = 38, ∠2 = 38, ∠3 = 38, ∠4 = 38

3)  ∠1 = 26, ∠2 = 128, ∠3 = 128

4) ∠1 = 118, ∠2 = 31, ∠3 = 31

5)  ∠1 = 32, ∠2 = 90, ∠3 = 58, ∠4 = 32

6)  ∠1 = 90, ∠2 = 60, ∠3 = 60, ∠4 = 30

7) ∠1 = 55, ∠2 = 35, ∠3 = 55, ∠4 = 90

8) ∠1 = 60, ∠2 = 90, ∠3 = 30

9)  ∠1 = ∠3 = 90, ∠2 = 55

10)  ∠1 = 38, ∠2 = 90, ∠3 = ∠4 = 90

11) 

a) In the rhombus JKLM,  ∠L and ∠M are co-interior angles they add upto 180 degree. They are not congruent to each other. So, it is sometimes true.

b)∠K and ∠M are opposite angles and they are congruent. So, it is always true.

c) JM and KL are opposite sides, they must be equal. So, it is true always.

d) In rhombus all four sides will be equal then JK and KL are adjacent sides and they are equal. So, it is true always.

e) JL and KM are diagonals, so they are not equal always. Then it is sometimes true.

f) ∠JKM ≅ ∠LKM

The diagonals are angle bisector, then they must be equal. True always.

12)

a) In square, rectangle all angles measures must be 90 degree.

b) It is equiangular and equilateral.

All four angle measures will be equal and all side lengths will be equal in the shape of square.

c) The diagonals are perpendicular.

Diagonals are perpendicular in the shape of rhombus.

d) Opposite sides are congruent.

Opposite sides will be equal in the shapes parallelogram, square, rectangle and rhombus.

e) The diagonals bisect each other.

Diagonals will bisect each other in all the shapes parallelogram, square, rectangle and rhombus.

f) The diagonals bisect opposite angles.

In the quadrilaterals like parallelogram, square, rectangle and rhombus, the diagonals will bisect opposite angles.

13) Rhombus

Problem 1 :

For rhombus JMLK, find each angle measure.

1)  ∠1      2)  ∠2      3)  ∠3     4)  ∠4      5)  ∠JML      6)  ∠MLK+

Solution

Problem 2 :

For rhombus JLMK, find each line segment and angle measure.

1)  ∠1      2)  ∠2      3)  ∠3     4)  ∠4      5)  ∠5      6)  LK    7)  MK

Solution

Problem 3 :

For rhombus SLTM, find the missing values. If ∠1 = 3x + 8, ∠2 = 11x - 24, find

1)  x =      2)  ∠1      3)  ∠2     4)  ∠3      5)  ∠4      6)  ∠5

Solution

Problem 4 :

For rhombus SLTM, find the missing values, if ∠1 = 5x and ∠2 = x2 - 50, find 

1)  x =      2)  ∠1      3)  ∠2     4)  ∠3      5)  ∠4      6)  ∠5

Solution

Problem 5 :

Find

1)  ∠D  2)  ∠DCB    3) ∠1    4)  ∠2     5)  ∠3      6)  ∠4

Solution

Problem 6 :

Find all missing angles.

Solution

Problem 7 :

Find the measure of the numbered angles.

Solution

Using the properties of rhombuses, write and solve algebraic equation for each figure :

Problem 8 :

properties-of-rhombus-q4.png

Solution

Problem 9 :

properties-of-rhombus-q5.png

Solution

Problem 10 :

properties-of-rhombus-q6.png

Solution

Problem 11 :

properties-of-rhombus-q7.png

Solution

Answer Key

1)  ∠1  =  25, ∠2  =  90, ∠3 = 65, ∠4 = 65, ∠JML = 130, ∠MLK = 50

2) ∠1 = 40, ∠2 = 40, ∠3 = 50, ∠4 = 50, ∠5 = 90, LK = 20, MK = 18.6

3) x = 4,  ∠1  = 20, ∠2 = 20, ∠3 = 70, ∠4  =  70, ∠5 = 90

4) x = 10 and x = -5, ∠1 = 50, ∠2 = 50, ∠3 = 40, ∠4 = 40, ∠5 = 90

5)  ∠D = 130, ∠DCB = 50, ∠1 = ∠2 = ∠3 = ∠4 = 25

6) ∠1 = 72, ∠2 = 54,∠3 = 54, ∠4 = 72

7) ∠1 = 70, ∠2 = 90, ∠3 = 70, ∠4 = 70

8) x = 3

9) x = 10

10) x = 10

11) x = 5

Find the value of x in each rhombus.

Problem 1 :

sidelengthofrhombusq1

Solution

Problem 2 :

sidelengthofrhombusq2

Solution

Problem 3 :

sidelengthofrhombusq3

Solution

Problem 4 :

sidelengthofrhombusq4

Solution

Find the value of x and y in each rhombus.

Problem 5 :

sidelengthofrhombusq5

Solution

Problem 6 :

sidelengthofrhombusq6

Solution

Problem 7 :

sidelengthofrhombusq7

Solution

Problem 8 :

sidelengthofrhombusq8

Solution

Problem 9 :

The diagonals of a rhombus are 6 cm and 8 cm respectively. Find the length of the sides of the rhombus. Also find its perimeter.

Solution

Problem 10 :

In rhombus PINK, PI = 3x + 7 and IN = x + 19, what is the value of NK?

Solution

Problem 11 :

The area of the rhombus shaped field is 5544 m2 and length of one diagonal is 72 m, what will be the perimeter of the field 

a)  380 m   b)  300 m   c)  340 m   d)  320 m

Solution

Answer Key

1) x = 6

2) x = 42

3) x = 15

4) x = -11

5)  x = 11 and y = 30.

6) x = -14 and y = 14.

7)  x = 15 and y = 3.

8)  x = 13 and y = 20

9) Perimeter of rhombus = 20 cm

10) NK = 25

11)  340 m.

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More