SIMPLIFYING COMPLEX FRACTIONS WORKSHEET

To simplify complex fractions, we have to be aware the concepts given below.

Simplify the fractions in the numerator and the denominator separately, then divide the two fractions and simplify.

Simplify the following :

1) (2 - 1/4) / (2 + 1/4)               Solution

2) (1/2 + 1/5) / (3/4 - 1/2)            Solution

3)  (1 + 1/4 - 1/3) / (1 - 1/2 + 1/5)           Solution

4)  (1/3 + 1/4) / (1 - 1/5)                 Solution

5)  (22 + 11 ÷ 2) / (23 - 3 x 4)           Solution

6)  (15 - 33) / (17 - 7 x 3)          Solution

7)  (15 + 3 x 52) / (11 - 25 ÷ 2)              Solution

8)  (-4 - 11) / (12 - 9 ÷ 2)              Solution

9)  (1 - 3/4) / (2 + 1/4)              Solution

10)  (1/2 + 1/3 - 1/6) / (1/12 - 1/4)             Solution

11) (2   1/2 ÷ 3  3/4)      Solution

12)  (2/3 + 3/4) ÷ (1/2 - 1/3)     Solution

Answer Key

1)   7/9

2)   2  4/5

3)  1  13/42

4)  7/8

5)  2  1/2

6)  -4  1/2

7)  36

8)  -2

9)   1/9

10)  -4

11)  2/3

12)  8   1/2

Simplifying Complex Fractions with Variables

1)  (1 + 1/x) /(1 - 1/x2)          Solution

2)  [4 + 12/(2x - 3)] / [5 + 15/(2x - 3)]         Solution

3)  [(2/x) - 5/(x + 3)] / [(3/x) + 3/(x+3)]            Solution

4)  [x/(x + 2) - x/(x - 2)] / [x/(x + 2) + x/(x - 2)]    Solution

5) [2a - (1/8a)] / [4 + (1/a)]     Solution

6)  [4/x2 - 3/x] / [1/x2 + 2/3x]     Solution

7) [5 - 1/a] / [1/a2 - 25]    Solution

8) x - [(x + 2) / 3]      Solution

9)  2x/3 - [(2x + 1) / 6]     Solution

10) (x + 6)/2 - [(1 - 3x) / 7]     Solution

Answer Key

1)  x/(x - 1)

2)  4/5 

3)  (2 - x) / (2x + 3)

4)  -2/x

5)  (4a - 1) / 8a

6)  3(4 - 3x) / (3 + 2x)

7)  - a / (5a + 1)

8) (2x - 2)/3

9)  (2x - 1)/6

10)   (x + 40) / 14

Evaluate the following.

Problem 1 :

[16 - (4 - 2)] ÷ [14 ÷ (3 + 4)]

Solution

Problem 2 :

21 / (6 - 9)

Solution

Problem 3 :

(18 ÷ 3) / (14 - 11)

Solution

Problem 4 :

[(8 x 7) - 5] / 17

Solution

Problem 5 :

(12 + 3 x 4) ÷ (5 + 7) 

Solution

Problem 6 :

[3 x (7 - 5)] ÷ 2

Solution

Problem 7 :

[2 x 8 - 1] ÷ [8 - 6 ÷ 2]

Solution

Problem 8 :

[4 + 82÷ [11 - 35]

Solution

Problem 9 :

[25 - (16 - 11)] ÷ [12 ÷ 4 + 2]

Solution

Problem 10 :

[31 - 11] ÷ [12 ÷ 6]

Solution

Problem 11 :

[18 + 14 ÷ 2÷ [12 ÷ 4]

Solution

Problem 12 :

[22 + 11 ÷ 2÷ [23 - 3 x 4]

Solution

Problem 13 :

[-4 - 11] ÷ [12 - 9 ÷ 2]

Solution

Answer Key

1)   7

2)  7

3)  2

4)  3

5)  2

6)  3

7)  3

8)  -17/6

9)  4

10)  10

11)  25

12)  2  1/2

13)  -2

Evaluate each expression.

Problem 1 :

2 + 23-65· (-2)

Solution

Problem 2 :

-116 - 74(-2) - 1

Solution

Problem 3 :

-43 - 22 · -25

Solution

Problem 4 :

-56 + 213 - 45

Solution

Problem 5 :

1162- 2-12

Solution

Problem 6 :

-85 - -53 · 116-32

Solution

Problem 7 :

-32 + -54 + 1412

Solution

Problem 8 :

-525 + 74 · 2

Solution

Problem 9 :

23 - 53-13 - -95 - 32

Solution

Problem 10 :

-43 - 7512 - (-1) · (-1)

Solution

Problem 11 :

-32 · -35 - 5(-1) - -12

Solution

Problem 12 :

Given, 43 · (-1)-16 - 12= -43-16 - 112= -43-16 - 11 × 662= -43-16 - 662= -43 -762= -43 4936= -43 × 3649= -41 × 1249 = -4849

Solution

Answer Key

1)  28/9

2)  43/36

3)  25/6

4)  -215/42

5)  -49/18

6)  -131/135

7)  -7/2

8)  -50/39

9)  -24/11

10)  -2/5

11)  -84/5

12)  -48/49

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More