Problem 1 :
If f(x) = xk and f’(1) = 10, then the value of k is :
(a) 10 (b) -10 (c) 1/10 (d) None
Problem 2 :
If y = 4x3 – 7x4 then dy/dx is
(a) 2x(14x2 – 6x) (b) 2x(-14x2 + 6x)
(c) 2x(14x2 + 6x) (d) None
Problem 3 :
If x2 + y2 = a2, find dy/dx.
(a) y/x (b) – y/x (c) –x/y (d) x/y
Problem 4 :
Let x = at3, y = a/t3. Then dy/dx =
(a) -1/t6 (b) -3a/t6 (c) 1/3at6 (d) None
Problem 5 :
If y = e3x, find y’’.
(a) 6e3x (b) 3e3x (c) 12e3x (d) 9e3x
Problem 6 :
If xm yn = (x + y)m + n, then find dy/dx :
(a)x/y (b) y/x (c) xy (d) None
Problem 7 :
If y = log Xx then dy/dx is equal to :
(a) log ex (b) log e/x (c) log x/e (d) 1
Problem 8 :
If y = (x1/3 - x-1/3)3, then dy/dx is
(a) 1 + x-2 + x-2/3 – x-4/3 (b) 1 + x-2 + x-2/3 – x-4/3
(c) 1 – x-2 + x-2/3 – x-4/3 (d) None of these
Problem 9 :
If f(x) = eax^2 + bx + c the f’(x) is
(a) eax^2 + bx + c (b) eax^2 + bx + c (2ax + b)
(c) 2ax + b (d) None of these
Problem 10 :
If u = 3t4 + 5t3 + 2t2 + t + 4, then the value of du/dt at t = -1 is
(a) 0 (b) 1 (c) 2 (d) 5
Problem 11 :
If y = (x – 1) (x + 1), find d2y/dx2.
(a) 2 (b) -1 (c) 0 (d) x2
Problem 12 :
The gradient of the curve
y = 2x3 – 3x2 – 12x + 8 at x = 0 is
(a) -12 (b) 12 (c) 0 (d) None of these
Problem 13 :
The gradient of the curve
y = 2x3 – 5x2 – 3x at x = 0 is
(a) 3 (b) -3 (c) 1/3 (d) None of these
Problem 14 :
The derivative of y = √(x + 1) is
(a) 1/√(x + 1) (b) -1/√(x + 1) (c) 1/2√(x + 1)
Problem 15 :
If f(x) = (x2 + 1)/(x2 – 1) then f’(x) is
(a) -4x/(x2 – 1)2 (b) 4x/(x2 – 1)2
(c) x/(x2 – 1)2 (d) None of these
1) k = 10, option a
2) dy/dx = 2x(6x - 14x2), option b
3) -x/y, option c
4) -1/t6, option a
5) y´´ = 9 ⋅ e3x, option d
6) y/x, option b
7) log(ex), option a
8) 1 – x-2/3 – x-4/3 + x-2, option a
9) f´(x) = (2ax + b) eax^2 + bx + c, option b
10) 0, option a
11) d2y/dx2 = 2, option a
12) -12, option a
13) -3, option b
14) dy/dx = 1/2√(x + 1), option c
15) -4x/(x2 - 1)2, option a
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM