TEST ON DIFFERENTIATION FOR CA FOUNDATION

Problem 1 :

If f(x) = xk and f(1) = 10, then the value of k is :

(a) 10     (b) -10     (c) 1/10      (d) None

Solution :

f(x) = xk

f´(x) = kxk – 1

Given, f´(1) = 10

f´(1) = k(1)k – 1

f´(1) = k

f´(1) = k

k = 10

So, the value of k is10.

So, option (a) is correct.

Problem 2 :

If y = 4x3 – 7x4 then dy/dx is

(a)  2x(14x2 – 6x)     (b) 2x(-14x2 + 6x)

(c) 2x(14x2 + 6x)       (d) None

Solution :

y = 4x3 – 7x4

Differentiation with respect to ‘x’.

dy/dx = 4(3x2) - 7(4x3)

dy/dx = 12x2 - 28x3

dy/dx = 2x(6x - 14x2)

So, option (b) is correct.

Problem 3 :

If x2 + y2 = a2, find dy/dx.

(a)  y/x        (b) – y/x       (c) –x/y       (d) x/y

Solution :

x2 + y2 = a2

Differentiating with respect to x, we get

2x + 2y(dy/dx) = 0

dy/dx = -2x/2y

= -x/y

So, option (c) is correct.

Problem 4 :

Let x = at3, y = a/t3. Then dy/dx =

(a) -1/t6      (b) -3a/t6     (c) 1/3at6     (d) None

Solution :

x = at3

dx/dt = 3at2

y = a/t3

dy/dt = -3a/t4

dy/dt × dt/dx = -3a/t4 × 1/3at2

dy/dx = -1/t6

So, option (a) is correct.

Problem 5 :

If y = e3x, find y’’.

(a) 6e3x        (b) 3e3x        (c) 12e3x        (d) 9e3x

Solution :

y = e3x

y´ = 3 e3x

y´´ = 9 e3x

So, option (d) is correct.

Problem 6 :

If xm yn = (x + y)m + n, then find dy/dx :

(a)x/y      (b) y/x      (c) xy     (d) None

Solution :

xm yn = (x + y)m + n

taking log on both sides.

log(xm yn) = log(x + y)m + n

logxm + logyn = (m + n) log(x + y)

m logx + n logy = (m + n) log(x + y)

Differentiating both sides with respect to ‘x’.

m/x + n/y dy/dx = (m + n)/(x + y) (1 + dy/dx)

So, option (b) is correct.

Problem 7 :

If y = log Xx then dy/dx is equal to :

(a) log ex (b) log e/x (c) log x/e (d) 1

Solution :

Given, y = log Xx

= x log x

Differentiate with respect to ‘x’.

Using product rule

u = x and v = log x

du = dx and dv = 1/x

Product rule :

d(uv) = udv + vdu

dy/dx = x(1/x) + logx

= 1 + log x

= log e + log x

= log(ex)

So, option (a) is correct.

Problem 8 :

If y = (x1/3 - x-1/3)3, then dy/dx is

(a) 1 + x-2 + x-2/3 – x-4/3       (b) 1 + x-2 + x-2/3 – x-4/3

(c) 1 – x-2 + x-2/3 – x-4/3       (d) None of these

Solution :

y = (x1/3 - x-1/3)3

(a – b)3 = a3 – 3a2b + 3b2a – b3

y = x – 3x1/3 + 3x-1/3 – x-1

dy/dx = 1 – x-2/3 – x-4/3 + x-2

So, option (a) is correct.

Problem 9 :

If f(x) = eax^2 + bx + c the f’(x) is

(a) eax^2 + bx + c     (b) eax^2 + bx + c (2ax + b)

(c) 2ax + b               (d) None of these

Solution :

f(x) = eax^2 + bx + c

f´(x) = (2ax + b) eax^2 + bx + c

So, option (b) is correct.

Problem 10 :

If u = 3t4 + 5t3 + 2t2 + t + 4, then the value of du/dt at t = -1 is

(a) 0      (b) 1       (c) 2        (d) 5

Solution :

u = 3t4 + 5t3 + 2t2 + t + 4

du/dt = 12t3 + 15t2 + 4t + 1

Given, t = -1

= 12(-1)3 + 15(-1)2 + 4(-1) + 1

= -12 + 15 - 4 + 1

= 0

So, option (a) is correct.

Problem 11 :

If y = (x – 1) (x + 1), find d2y/dx2.

(a) 2       (b) -1       (c) 0          (d) x2

Solution :

y = (x – 1) (x + 1)

= x2 + x – x – 1

= x2 - 1

dy/dx = 2x

d2y/dx2 = 2

So, option (a) is correct.

Problem 12 :

The gradient of the curve

y = 2x3 – 3x2 – 12x + 8 at x = 0 is

(a) -12      (b) 12      (c) 0     (d) None of these        

Solution :

y = 2x3 – 3x2 – 12x + 8

dy/dx = 2 3x2 3 2x - 12

dy/dx = 6x2 – 6x – 12

substitute x = 0

= 6(0)2 – 6(0) – 12

= -12

So, option (a) is correct.

Problem 13 :

The gradient of the curve

y = 2x3 – 5x2 – 3x at x = 0 is

(a) 3      (b) -3     (c) 1/3      (d) None of these          

Solution :

y = 2x3 – 5x2 – 3x

dy/dx = 2 3x2 5 2x - 3

dy/dx = 6x2 – 10x – 3

substitute x = 0

= 6(0)2 – 10(0) – 3

= -3

So, option (b) is correct.

Problem 14 :

The derivative of y = √(x + 1) is

(a) 1/√(x + 1)       (b) -1/√(x + 1)     (c) 1/2√(x + 1)

Solution :

y = √(x + 1)

dy/dx = 1/2(x + 1)-1/2

dy/dx = 1/2√(x + 1)

So, option (c) is correct.

Problem 15 :

If f(x) = (x2 + 1)/(x2 – 1) then f’(x) is

(a) -4x/(x2 – 1)2      (b) 4x/(x2 – 1)2

(c) x/(x2 – 1)2         (d) None of these  

Solution :

f(x) = (x2 + 1)/(x2 – 1)

Using quotient rule,

u = x2 + 1 and v = x2 - 1

du = 2x and dv = 2x

d(u/v) = (vdu - udv) / v2


So, option (a) is correct.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More