FROM THE GIVEN VERTEX AND FOCUS FIND EQUATION OF ELLIPSE WORKSHEET

Find the standard form of the equation of the ellipse with the given characteristics and center at the origin.

Problem 1 :

find-equ-of-ellipse-q1

Solution

Problem 2 :

find-equ-of-ellipse-q2.png

Solution

Problem 3 :

Vertices: (±6, 0); foci: (±2, 0)

Solution

Problem 4 :

Vertices: (0, ±8); foci: (0, ±4)

Solution

Find the standard form of the equation of the ellipse with the given characteristics.

Problem 5 :

find-equ-of-ellipse-q5.png

Solution

Problem 6 :

find-equ-of-ellipse-q6.png

Solution

Problem 7 :

find-equ-of-ellipse-q7.png

Solution

Problem 8 :

find-equ-of-ellipse-q8.png

Solution

Answer Key

1) x2/4 + y2/16 = 1

2)  x2/4 + y2/16 = 1

3)  x2/36 + y2/32 = 1

4)  x2/48 + y2/64 = 1

5) (x - 2)2/1 + (y - 3)2/9 = 1

6) (x - 4)2/9 + y2/16 = 1

7) (x + 2)2/16 + (y - 3)2/9 = 1

8)  (x - 2)2/4 + (y + 1)2/1 = 1

Find the standard form of the equation of each ellipse.

Problem 1 :

Foci (0, ±3), vertices (0, ±5)

Solution

Problem 2 :

Major axis horizontal with length 12,length of minor axis 4; center: (-1, 3)

Solution

Problem 3 :

Foci (±5, 0), length of major axis 12

Solution

Problem 4 :

Endpoints of major axis: (2, 2) & (8, 2), Endpoints of minor axis: (5, 3) & (5, 1)

Solution

Problem 5 :

find-ellipse-q5

Solution

Problem 6 :

find-ellipse-q6.png

Solution

Answer Key

1)  equation of the ellipse is

x216+y225=1

2)  

(x+1)262+(y-3)222=1(x+1)236+(y-3)24=1

3)  

x236+y211=1

4)  

(x-5)232+(y-2)212=1(x-5)29+(y-2)21=1

5)  

(x+1)232+(y-0)252=1(x+1)29+y225=1

6) 

(x-2)232+(y+1)222=1(x-2)29+(y+1)24=1

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More