EVALUATING LOGARITHMS WITHOUT A CALCULATOR WORKSHEET

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Find :

1)  log9

2)  log32

3)  log√2

4)  log√2

5)  log3√3

6)  log1

7)  log8

8)  log(1/8)

9)  log1/8 (1/8)

10)  log√2 (1/√2)

11)  log(1/√2)

12)  log(1/√2)

Solution

Problem 13 :

Solve ln (4x − 7) = ln (x + 5)

Solution

Problem 14 :

log2(5x − 17) = 3

Solution

Problem 15 :

log10(9x + 1) = 3

Solution

Problem 16 :

log8√(1 - x) = 1/3

Solution

Problem 17 :

Solve the simultaneous equations:

log3 x + log5 y = 6

log3 x - log5 y = 2

Solution

Problem 18 :

Solve the equation

3(1 + log x) = 6 + log x

Solution

Problem 19 :

Solve log3 [(2 + x) / (2 - x)] = 3

Solution

Answer Key

1)  2

2)  5

3)  1/2

4)  1/4

5)  3/2

6)  0

7)  1

8)  -1

9)  1

10)  -1

11)  -1/2

12)  -1/6

13) x = 4

14) x = 5

15) x = 111

16) x = -3

17)  x = 9 and y = 625

18) x = 31.6

19) x = 56/3

Without using a calculator, simplify.

1)  log 8 / log 2

2)  log 9 / log 3

3)  log 4 / log 8

4)  log 5 / log (1/5)

5)  log (0.5) / log 2

6)  log 8 / log (0.25)

7)  log 2b / log 8

8)  log 4 / log 2a

Solution

Problem 9 :

Under certain conditions, the wind speed s (in knots) at an altitude of h meters above a grassy plain can be modeled by the function

s(h) = 2 ln 100h

a. By what amount does the wind speed increase when the altitude doubles?

b. Show that the given function can be written in terms of common logarithms as

s(h) = (2 /log e)  (log h + 2)

Solution

Problem 10 :

 -3 ln x = -24

Solution

Problem 11 :

4 - 3log (5x) = 16

Solution

Problem 12 :

log3(x - 1) = -2

Solution

Problem 13 :

log2(x2 - 4) = log2 21

Solution

Problem 14 :

The function

s(d) = 0.159 + 0.118 log d

relates the slope, s, of a beach to the average diameter, d, in millimeters, of the sand particles on the beach. Which beach has a steeper slope: beach A, which has d = 0.0625, or beach B, which has very coarse sand with d = 1 ? Justify your decision. 

Solution

Problem 15 :

The function

S(d) = 93 log d + 65

relates the speed of the wind, S, in miles per hour, near the center of a tornado to the distance that the tornado travels, d, in miles.

a) If a tornado travels a distance of about 50 miles, estimate its wind speed near its center.

b) If a tornado has sustained winds of approximately 250 mph, estimate the distance it can travel.

Solution

Answer Key

1)  3

2)  2

3)  2/3

4)  -1

5)  1

6)  -3/2

7)  b/3

8)  2/a

9) a) the wind speed will increase by 1.38 knots.

b)  (log h2 + 4) / log e

10) x = e8

11) x = 1/50000

12) x = 10/9

13) x = -5 and 5

14) Slope for Beach B > Slope for Beach A

15) a) 222.91

b) Approximately 95 miles

Find the value of y.

1)  log5 25 = y

2)  log31 = y

3)  log16 4 = y

4)  log2 (1/8) = y

5)  log51 = y

6)  log2 8 = y

7)  log7 (1/7) = y

8)  log3 (1/9) = y

9)  logy 32 = 5

10)  log9 y = -1/2

11)  log4 (1/8) = y

12)  log9 (1/81) = y

Solution

Problem 13 :

Describe the similarities and difference between in solving the equations 

45x - 2 = 16 and log4(10x + 6) = 1

Then solve the each equation

Solution

Problem 14 :

For a sound with intensity I (in watts per square meter) the loudness L(I) of the sound (in decibels) is given by the function

L(I) = 10 log (I/I0)

Where I0 is the intensity of barely audible sound (about 10-12 watts per square meter) An artist in a recording studio turns up the volume of a track so that the intensity of the sound doubles. By how many decibels does the loudness increase ?

Solution

Problem 15 :

The length ℓ (in centimeters) of a scalloped hammerhead shark can be modeled by the function

ℓ = 266 − 219e−0.05t

where t is the age (in years) of the shark. How old is a shark that is 175 centimeters long?

Solution

Answer Key

1)  y = 2

2)  y = 0

3)  y = 1/2

4)  y = -3

5)  y = 0

6)  y = 3

7)  y = -1

8)  y = -2

9)  y = 2

10)  y = 1/3

11)  y = -3/2

12)  y = -2

13) x = -1/5

14) The loudness increases by 10 log 2 decibels or about 3 decibels.

15) Approximately 18 years.

Solve the following logarithmic equations.

Problem 1 :

2 logx = log 2 + log (3x - 4)

Solution

Problem 2 :

log x + log(x - 1) = log(4x)

Solution

Problem 3 :

log3 (x + 25) - log3 (x - 1) = 3

Solution

Problem 4 :

log9 (x - 5) + log9 (x + 3) = 1

Solution

Problem 5 :

log x + log (x - 3) = 1

Solution

Problem 6 :

log2 (x - 2) + log2 (x + 1) = 2

Solution

Problem 7 :

ln x = -3

Solution

Problem 8 :

log(3x - 2) = 2

Solution

Problem 9 :

log (3x - 2) = 2

Solution

Problem 10 :

log5(x + 6) + log5(x + 2) = 1

Solution

Answer Key

1)  {2, 4}.

2) x = 5

3) x = 2

4) x = 6 or x = -4

5) x = 5 or x = -2

6)  x is 3 or -2

7) x = e-3

8) x = 34

9) x = 34

10) x = -1, x = -7

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More