VERIFYING GEOMETRIC PROPERTIES OF TRIANGLE WITH GIVEN POINTS

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

From the given vertices of the triangle, we can decide what type of triangle it will create by finding the length of all sides.

Equilateral triangle :

If length of all sides will be equal, then it will create a equilateral triangle.

Isosceles triangle :

If length of two sides alone will be equal, then it will create an isosceles triangle.

Scalene triangle :

If length of all sides is having different length, then it will be a scalene triangle.

Right triangle :

The length of all sides will satisfy the Pythagorean theorem, then it must be right triangle.

Problem 1 :

Is βˆ†PQR a right angled triangle if P(1, 2), Q(5, -1) and R(-4, -4) ?

Solution :

P(1, 2), Q(5, -1) and R(-4, -4) 

= √[(x2 - x1)2 + (y2 - y1)2]

 P(1, 2) and Q = (5, -1)

x1 = 1, y1 = 2, x2 = 5, y2 = -1

PQ = βˆš[(5 - 1)2 + (-1 - 2)2]

= βˆš[(4)2 + (-3)2]

= βˆš[16 + 9]

= βˆš25

PQ = 5

 Q = (5, -1) and  R(-4, -4) 

x1 = 5, y1 = -1, x2 = -4, y2 = -4

QR = βˆš[(-4 - 5)2 + (-4 + 1)2]

= βˆš[(-9)2 + (-3)2]

= βˆš[81 + 9]

QR = βˆš90

R(-4, -4)  and  P(1, 2)

x1 = -4, y1 = -4, x2 = 1, y2 = 2

RP = βˆš[(1 + 4)2 + (2 + 4)2]

= βˆš[(5)2 + (6)2]

= βˆš[25 + 36]

RP = βˆš61

βˆ†PQR is not a right angled triangle.

Problem 2 :

Classify  βˆ†DEF following triangle as scalene, isosceles or equilateral if D(5, 2), E(-3, 4) and F(-2, -3).

Solution :

D(5, 2), E(-3, 4) and F(-2, -3).

D = √[(x2 - x1)2 + (y2 - y1)2]

D(5, 2) and E(-3, 4)

x1 = 5, y1 = 2, x2 = -3, y2 = 4

DE = βˆš[(-3 - 5)2 + (4 - 2)2]

= βˆš[(-8)2 + (2)2]

= βˆš[64 + 4]

DE = βˆš68

E(-3, 4) and F(-2, -3).

x1 = -3, y1 = 4, x2 = -2, y2 = -3

EF = βˆš[(-2 + 3)2 + (-3 - 4)2]

= βˆš[(1)2 + (-7)2]

= βˆš[1 + 49]

EF = βˆš50

F(-2, -3) and D(5, 2)

x1 = -2, y1 = -3, x2 = 5, y2 = 2

FD = βˆš[(5 + 2)2 + (2 + 3)2]

= βˆš[(7)2 + (5)2]

= βˆš[49 + 25]

FD = βˆš74

Since all the sides are having different length, it must be a scalene triangle.

Problem 3 :

Given the points X(1, 4), Y(-2, 2) and Z(3, 1). Verify that βˆ†XYZ is a right triangle.

Solution :

X(1, 4), Y(-2, 2) and Z(3, 1)

D = √[(x2 - x1)2 + (y2 - y1)2]

X(1, 4) and Y(-2, 2)

x1 = 1, y1 = 4, x2 = -2, y2 = 2

XY = βˆš[(-2 - 1)2 + (2 - 4)2]

= βˆš[(-3)2 + (-2)2

= √[9 + 4]

XY = βˆš13 

Y(-2, 2) and Z(3, 1)

x1 = -2, y1 = 2, x2 = 3, y2 = 1

YZ = βˆš[(3 + 2)2 + (1 - 2)2]

= βˆš[(5)2 + (-1)2

= √[25 + 1]

YZ = βˆš26 

Z(3, 1) and X(1, 4)

x1 = 3, y1 = 1, x2 = 1, y2 = 4

ZX = βˆš[(1 - 3)2 + (4 - 1)2]

= βˆš[(-2)2 + (3)2

= √[4 + 9]

ZX = βˆš13

Verifying Pythagorean theorem :

(YZ)2 = (XY)2 + (ZX)2

(√26)2 = (√13)2 + (√13)2

26 = 13 + 13

26 = 26

Since the lengths of triangle satisfies Pythagorean theorem, it must be right triangle.

∴ βˆ†XYZ is not a right triangle. It is a isosceles triangle.

Problem 4 :

A triangle has vertices K(-2, 2), L(1, 5) and M(3, -3). Verify that :

a) The triangle has a right angle.

b) The midpoint of the hypotenuse is the same distance from each vertex.

Solution :

a)

Given, K(-2, 2), L(1, 5) and M(3, -3)

D = √[(x2 - x1)2 + (y2 - y1)2]

K(-2, 2) and L(1, 5)

x1 = -2, y1 = 2, x2 = 1, y2 = 5 

KL = βˆš[(1 + 2)2 + (5 + 2)2]

= βˆš[(3)2 + (7)2]

= βˆš[9 + 49]

KL = βˆš58

L(1, 5) and M(3, -3)

D = √[(x2 - x1)2 + (y2 - y1)2]

x1 = 1, y1 = 5, x2 = 3, y2 = -3 

LM = βˆš[(3 - 1)2 + (-3 - 5)2]

= βˆš[(2)2 + (-8)2]

= βˆš[4 + 64]

LM = βˆš68

M(3, -3) and K(-2, 2)

x1 = 3, y1 = -3, x2 = -2, y2 = 2 

MK = βˆš[(-2 - 3)2 + (2 + 3)2]

= βˆš[(-5)2 + (5)2]

= βˆš[25 + 25]

LM = βˆš50

b) L(1, 5) and M(3, -3)

Suppose that the midpoint is P.

x1 = 1, y1 = 5, x2 = 3, y2 = -3 

x1 + x22, y1 + y22P =1 + 32, 5 - 32 =42, 22

P = (2, 1)

Then,  K(-2, 2) and P (2, 1)

x1 = -2, y1 = 2, x2 = 2, y2 = 1 

KP = βˆš[(2 + 2)2 + (1 - 2)2]

= βˆš[(4)2 + (-1)2]

= βˆš[16 + 1]

KP = βˆš17

L(1, 5) and P (2, 1)

x1 = 1, y1 = 5, x2 = 2, y2 = 1 

LP = βˆš[(2 - 1)2 + (1 - 5)2]

= βˆš[(1)2 + (-4)2]

= βˆš[1 + 16]

LP = βˆš17

M(3, -3) and P (2, 1)

x1 = 3, y1 = -3, x2 = 2, y2 = 1 

MP = βˆš[(2 - 3)2 + (1 + 3)2]

= βˆš[(-1)2 + (4)2]

= βˆš[1 + 16]

MP = βˆš17

So, the midpoint of the hypotenuse is the same distance from each vertex.

Problem 5 :

A triangle has vertices U(5, 5), V(1, -3) and W(-3, -1). Verify that :

a) βˆ†UVW is a right triangle

b) The median from the right angle to the hypotenuse is half  as long as the hypotenuse.

Solution :

a)

Given, U(5, 5), V(1, -3) and W(-3, -1)

D = √[(x2 - x1)2 + (y2 - y1)2]

U(5, 5), V(1, -3)

x1 = 5, y1 = 5, x2 = 1, y2 = -3 

UV = √[(1 - 5)2 + (-3 - 5)2]

= βˆš[(-4)2 + (-8)2]

= βˆš[16 + 64]

= βˆš80

V(1, -3) and W(-3, -1)

x1 = 1, y1 = -3, x2 = -3, y2 = -1 

VW = √[(-3 - 1)2 + (-1 + 3)2]

= βˆš[(-4)2 + (2)2]

= βˆš[16 + 4]

= βˆš20

W(-3, -1) and U(5, 5)

x1 = -3, y1 = -1, x2 = 5, y2 = 5 

WU = √[(5 + 3)2 + (5 + 1)2]

= βˆš[(8)2 + (6)2]

= βˆš[64 + 36]

WU = βˆš100

Verifying Pythagorean theorem :

(WU)2 = (VW)2 + (UV)2

(√100)2 = (√20)2 + (√80)2

100 = 20 + 80

100 = 100

Since it satisfies the Pythagorean theorem, it must create a right triangle.

b) From the above proof, we understand that UW is the hypotenuse.

U(5, 5) and W(-3, -1)

Midpoint of UW = (5 - 3)/2, (5 - 1)/2

= 2/2, 4/2

Midpoint of hypotenuse = (1, 2)

Distance between V and the midpoint  :

V(1, -3) and midpoint (1, 2)

Distance between them = βˆš[(1-1)2 + (2+3)2]

√[0 + 52

= 5

Length of hypotenuse = 10

Length of median = 5

Hence it is proved.

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More