USING PROPERTIES OF SOLVING SYSTEM OF EQUATIONS USING MATRICES

Problem 1 :

The augmented matrix of a system of linear equations is 1 2 73014600𝜆-7𝜇 + 5.The system has infinitely many solutions if

(1)  λ = 7,  μ ≠ -5      (2)  λ = -7,  μ = 5

(3)  λ  ≠ 7,  μ ≠ -5     (4)  λ = 7,  μ = -5

Solution :

Given, 1 2 73014600𝜆-7𝜇 + 5

If λ - 7 = 0,  μ  + 5 = 0 then,

λ  = 7,  μ = -5  

1 2 730146007-7-5 + 51 2 7301460000

f ρ(A) = ρ(AB) = 2, less than the number of unknown solutions.

Then the system is consistent. and it has infinitely many solution.

So, option (4) is correct.

Problem 2 :

Let A = 2-11-12-11-12 and 4B = 31-113x-113.

If B is the inverse of A, then the value of x is 

(1)  2     (2)  4     (3)  3     (4)  1

Solution :

Given, B is the inverse of A.

B = A-1

So, option (4) is correct.

Problem 3 :

If A = 3 -3 42-340-11, then adj(adj A) is
(1) 3 -3 42-340-11
(3) -3 3 -4-23-401-1
(2) 6 -6 84-680-22
(4) 3 -3 40-112-34

Solution :

Given, A = 3 -3 42-340-11adj(adj A) = |A|n - 2An = 3|A| = 3-342-340-11

= 3(-3 + 4) + 3(2 - 0) + 4(-2 - 0)

= 1 ≠ 0

A is non - singular.

adj(adj A) = |A|3 - 2 ⋅ A

= |A| ⋅ A

= I ⋅ A

= A

3 -3 42-340-11

So, option (1) is correct.

Problem 4 :

If xayb = em, xcyd = en, Δ1 = mbnd, Δ2 = amcn, Δ3 = abcd, then the values of x and y are respectively,

(1) e(Δ21), e(Δ31)

(2) log (Δ21), log(Δ31)

(2) log (Δ13), log(Δ23)

(4) e13), e23)

Solution :

Given that, xayb = em and xcyd = ena log x + b log y = m, and c log x + d log y = nUsing cramer's rule, we havelog x = Δ1Δ2 amd log y = Δ2Δ3x = eΔ12 and y = eΔ23

So, option (4) is correct.

Problem 5 :

Which of the following is/are correct ?

(i) Adjoint of a symmetric matrix is also a symmetric matrix.

(ii) Adjoint of a diagonal matrix is also a diagonal matrix.

(iii) If A is a square matrix of order n and λ is a scalar, then adj(λA) = λnadj(A)

(iv) A(adj A) = (adj A)A = |A|I

(i)  Only (i)  (2) (ii) and (iii)  (3)  (iii) and (iv)  (4)  (i), (ii) and (iv)

Solution :

(i) Adjoint of a symmetric matrix is also a symmetric matrix.

(ii) Adjoint of a diagonal matrix is also a diagonal matrix.

(iv) A(adj A) = (adj A)A = |A|I

So, option (4) is correct. 

Problem 6 :

If ρ(A) = ρ([A/B]), then the system AX = B of linear equations is

(1)  consistent and has a unique solution 

(3)  consistent and has infinitely many solution

(2)   consistent 

(4)  inconsistent

Solution :

(i) ρ(A) = ρ([A/B]) = n, then the system is consistent and has a unique solution.

(ii) ρ(A) = ρ([A/B]) then the system is consistent.

(iii) ρ(A) = ρ([A/B]) < n, then the system is consistent and has infinitely many solution.

(iv) ρ(A) ≠  ρ([A/B]) then the system is inconsistent and has no solution.

So, option (2) is correct.

Problem 7 :

If 0 ≤ θ ≤ π and the system of equations x + (sin θ)y – (cos θ)z = 0, (cos θ)x – y + z = 0, (sin θ)x + y – z = 0 has a non – trivial solution then θ is

(1) 2𝜋3
(3) 5𝜋6
(2) 3𝜋4
(4) 𝜋4

Solution :

Given, system has non-trivial solution.

Given A = 1sin 𝜃-cos 𝜃cos 𝜃-11sin 𝜃1-1|A| = 1sin 𝜃-cos 𝜃 cos 𝜃-11sin 𝜃1-11(1 - 1) - sin 𝜃(-cos 𝜃 - sin 𝜃) - cos 𝜃(cos 𝜃 + sin 𝜃) = 0-sin 𝜃(-cos 𝜃 - sin 𝜃) - cos 𝜃(cos 𝜃 + sin 𝜃) = 0sin 𝜃(sin 𝜃 + cos 𝜃) - cos 𝜃(sin 𝜃 + cos 𝜃) = 0(sin 𝜃 + cos 𝜃) (sin 𝜃 - cos 𝜃) = 0sin2 𝜃 - cos2 𝜃 = 0cos 2𝜃 = 0cos 2𝜃 = cos 𝜋2 2𝜃 = 𝜋2𝜃 = 𝜋4

So, option (4) is correct.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More