Cramer's rule is one of the methods to solve system of equations. The values of the variables are found with the help of determinants.
The given system of equations will be in the form of AX = B.
A = the coefficient matrix
X = column matrix with unknown variables
B = Column matrix with constants.
Δ, Δx, Δy
Problem 1 :
-x + y = -5
-5x - 2y + 6z = -5
-4x - y + 2z = 8
Solution:
Δ = -1(-4 + 6) - 1(-10 + 24) + 0
= -1(2) - 1(14)
= -2 - 14
Δ = -16
Δ1 = -5(-4 + 6) - 1(10 - 48) + 0
= -5(2) - 1(-58)
= -10 + 58
Δ1 = 48
Δ2 = -1(-10 - 48) + 5(-10 + 24) + 0
= -1(-58) + 5(14)
= 58 + 70
Δ2 = 128
Δ3 = -1(-16 - 5) - 1(-40 - 20) - 5(5 - 8)
= -1(-21) - 1(-60) - 5(-3)
= 21 + 60 + 15
Δ3 = 96
By Cramer's rule,
So, the values of x, y and z are -3, -8 and -6 respectively.
Problem 2 :
-4x - 2y - z = -11
-x - 2y = -6
x - y - 5z = 5
Solution:
Δ = -4(10 + 0) + 2(5 - 0) - 1(1 + 2)
= -4(10) + 2(5) - 1(3)
= -40 + 10 - 3
Δ = -33
Δ1 = -11(10 + 0) + 2(30 - 0) - 1(6 + 10)
= -11(10) + 2(30) - 1(16)
= -110 + 60 - 16
Δ1 = -66
Δ2 = -4(30 - 0) + 11(5 - 0) - 1(-5 + 6)
= -4(30) + 11(5) - 1(1)
= -120 + 55 - 1
Δ2 = -66
Δ3 = -4(-10 - 6) + 2(-5 + 6) - 11(1 + 2)
= -4(-16) + 2(1) - 11(3)
= 64 + 2 - 33
Δ3 = 33
By Cramer's rule,
So, the values of x, y and z are 2, 2 and -1 respectively.
Problem 3 :
5x + 2y + 2z = 9
-6x - 4y - 3z = -19
x - 2y = -9
Solution:
Δ = 5(0 - 6) - 2(0 + 3) + 2(12 + 4)
= 5(-6) - 2(3) + 2(16)
= -30 - 6 + 32
Δ = -4
Δ1 = 9(0 - 6) - 2(0 - 27) + 2(38 - 36)
= 9(-6) - 2(-27) + 2(2)
= -54 + 54 + 4
Δ1 = 4
Δ2 = 5(0 - 27) - 9(0 + 3) + 2(54 + 19)
= 5(-27) - 9(3) + 2(73)
= -135 - 27 + 146
Δ2 = -16
Δ3 = 5(36 - 38) - 2(54 + 19) + 9(12 + 4)
= 5(-2) - 2(73) + 9(16)
= -10 - 146 + 144
Δ3 = -12
By Cramer's rule,
So, the values of x, y and z are -1, 4 and 3 respectively.
Problem 4 :
4a + 4c = 4
4a - 3b + c = -14
-2a - 3b - 5c = -20
Solution:
Δ = 4(15 + 3) - 0 + 4(-12 - 6)
= 4(18) + 4(-18)
= 72 - 72
Δ = 0
Δ1 = 4(15 + 3) - 0 + 4(42 - 60)
= 4(18) + 4(-18)
= 72 - 72
Δ1 = 0
Δ2 = 4(70 + 20) - 4(-20 + 2) + 4(-80 - 28)
= 4(90) - 4(-18) + 4(-108)
= 360 + 72 - 432
Δ2 = 0
Δ3 = 4(60 - 42) - 0 + 4(-12 - 6)
= 4(18) + 4(-18)
= 72 - 72
Δ3 = 0
Since Δ = 0, Δ1 = 0, Δ2 = 0 and Δ3 = 0 and atleast one of the element in Δ is non zero.
Then the system is consistent and it has infinitely many solution.
Problem 5 :
4x - 4y + 2z = -14
4x + 2y = 14
-3y + z = -10
Solution:
Δ = 4(2 + 0) + 4(4 - 0) + 2(-12 - 0)
= 4(2) + 4(4) + 2(-12)
= 8 + 16 - 24
Δ = 0
Δ1 = -14(2 + 0) + 4(14 + 0) + 2(-42 + 20)
= -14(2) + 4(14) + 2(-22)
= -28 + 56 - 44
Δ1 = -16 ≠ 0
Here Δ = 0 but Δ1 ≠ 0.
So, the system is inconsistent and it has no solution.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM