USING CRAMERS RULE TO SOLVE SYSTEMS OF EQUATIONS WITH 3 VARIABLES

Cramer's rule is one of the methods to solve system of equations. The values of the variables are found with the help of determinants. 

The given system of equations will be in the form of AX = B.

A = the coefficient matrix

X = column matrix with unknown variables

B = Column matrix with constants.

Δ, Δx, Δy

  • Δ ≠ 0, Δx ≠ 0, Δy ≠ 0 then the system will have unique solution.
  • Δ = 0, Δx = 0, Δy = 0 then the system will have infinitely many solutions.
  • Δ = 0, Δx or Δy ≠ 0 (or) Δ  0, Δx or Δy = 0 then the system is inconsistent and it has no solution.

Problem 1 :

-x + y = -5

-5x - 2y + 6z = -5

-4x - y + 2z = 8

Solution:

Δ=-110-5-26-4-12 Δ1=-510-5-268-12Δ2=-1-50-5-56-482 Δ3=-11-5-5-2-5-4-18

Δ = -1(-4 + 6) - 1(-10 + 24) + 0

= -1(2) - 1(14)

= -2 - 14

Δ = -16

Δ1 = -5(-4 + 6) - 1(10 - 48) + 0

= -5(2) - 1(-58)

= -10 + 58

Δ1 = 48

Δ2 = -1(-10 - 48) + 5(-10 + 24) + 0

= -1(-58) + 5(14)

= 58 + 70

Δ2 = 128

Δ3 = -1(-16 - 5) - 1(-40 - 20) - 5(5 - 8)

= -1(-21) - 1(-60) - 5(-3)

= 21 + 60 + 15

Δ3 = 96

By Cramer's rule,

x=Δ1Δ=48-16=-3y=Δ2Δ=128-16=-8z=Δ3Δ=96-16=-6

So, the values of x, y and z are -3, -8 and -6 respectively.

Problem 2 :

-4x - 2y - z = -11

-x - 2y = -6

x - y - 5z = 5

Solution:

Δ=-4-2-1-1-201-1-5 Δ1=-11-2-1-6-205-1-5Δ2=-4-11-1-1-6015-5 Δ3=-4-2-11-1-2-61-15

Δ = -4(10 + 0) + 2(5 - 0) - 1(1 + 2)

= -4(10) + 2(5) - 1(3)

= -40 + 10 - 3

Δ = -33

Δ1 = -11(10 + 0) + 2(30 - 0) - 1(6 + 10)

= -11(10) + 2(30) - 1(16)

= -110 + 60 - 16

Δ1 = -66

Δ2 = -4(30 - 0) + 11(5 - 0) - 1(-5 + 6)

= -4(30) + 11(5) - 1(1)

= -120 + 55 - 1

Δ2 = -66

Δ3 = -4(-10 - 6) + 2(-5 + 6) - 11(1 + 2)

= -4(-16) + 2(1) - 11(3)

= 64 + 2 - 33

Δ3 = 33

By Cramer's rule,

x=Δ1Δ=-66-33=2y=Δ2Δ=-66-33=2z=Δ3Δ=33-33=-1

So, the values of x, y and z are 2, 2 and -1 respectively.

Problem 3 :

5x + 2y + 2z = 9

-6x - 4y - 3z = -19

x - 2y = -9

Solution:

Δ=522-6-4-31-20 Δ1=922-19-4-3-9-20Δ2=592-6-19-31-90 Δ3=529-6-4-191-2-9

Δ = 5(0 - 6) - 2(0 + 3) + 2(12 + 4)

= 5(-6) - 2(3) + 2(16)

= -30 - 6 + 32

Δ = -4

Δ1 = 9(0 - 6) - 2(0 - 27) + 2(38 - 36)

= 9(-6) - 2(-27) + 2(2)

= -54 + 54 + 4

Δ1 = 4

Δ2 = 5(0 - 27) - 9(0 + 3) + 2(54 + 19)

= 5(-27) - 9(3) + 2(73)

= -135 - 27 + 146

Δ2 = -16

Δ3 = 5(36 - 38) - 2(54 + 19) + 9(12 + 4)

= 5(-2) - 2(73) + 9(16)

= -10 - 146 + 144

Δ3 = -12

By Cramer's rule,

x=Δ1Δ=4-4=-1y=Δ2Δ=-16-4=4z=Δ3Δ=-12-4=3

So, the values of x, y and z are -1, 4 and 3 respectively.

Problem 4 :

4a + 4c = 4

4a - 3b + c = -14

-2a - 3b - 5c = -20

Solution:

Δ=4044-31-2-3-5 Δ1=404-14-31-20-3-5Δ2=4444-141-2-20-5 Δ3=4044-3-14-2-3-20

Δ = 4(15 + 3) - 0 + 4(-12 - 6)

= 4(18) + 4(-18)

= 72 - 72 

Δ = 0

Δ1 = 4(15 + 3) - 0 + 4(42 - 60)

= 4(18) + 4(-18)

= 72 - 72

Δ1 = 0

Δ2 = 4(70 + 20) - 4(-20 + 2) + 4(-80 - 28)

= 4(90) - 4(-18) + 4(-108)

= 360 + 72 - 432

Δ2 = 0

Δ3 = 4(60 - 42) - 0 + 4(-12 - 6)

= 4(18) + 4(-18)

= 72 - 72

Δ3 = 0

Since Δ = 0, Δ1 = 0, Δ2 = 0 and Δ3 = 0 and atleast one of the element in Δ is non zero. 

Then the system is consistent and it has infinitely many solution.

Problem 5 :

4x - 4y + 2z = -14

4x + 2y = 14

-3y + z = -10

Solution:

Δ=4-424200-31 Δ1=-14-421420-10-31Δ2=4-14241400-101 Δ3=4-4-1442140-3-10

Δ = 4(2 + 0) + 4(4 - 0) + 2(-12 - 0)

= 4(2) + 4(4) + 2(-12)

= 8 + 16 - 24

Δ = 0

Δ1 = -14(2 + 0) + 4(14 + 0) + 2(-42 + 20)

= -14(2) + 4(14) + 2(-22)

= -28 + 56 - 44

Δ1 = -16 ≠ 0

Here Δ = 0 but Δ1 ≠ 0.

So, the system is inconsistent and it has no solution.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More