USING COMPOUND ANGLE FORMULA EVALUATE THE TRIGONOMETRIC FUNCTIONS

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

Simplify each of the following expressions.

Problem 1 :

sin (ฯ€  - x)

Solution :

sin (A - B) = sin A cos B - cos A sin B 

sin (ฯ€ - x) = sin ฯ€ cos x - cos ฯ€ sin x

We know that,

sin ฯ€ = 0

cos ฯ€ = -1

sin (ฯ€ - x) = 0 ร— cos x  - (-1) sin x

sin (ฯ€ - x) = sin x

Problem 2 :

cos x + 3๐œ‹2

Solution :

cos (A + B) = cos A cos B - sin A sin Bcos x + 3๐œ‹2 =cos x cos 3๐œ‹2 - sin x sin 3๐œ‹2 We know that, cos 3๐œ‹2 =0sin 3๐œ‹2 = -1 cos x + 3๐œ‹2 =cos x ร— 0 - sin x ร— (-1)cos x + 3๐œ‹2 = sin x

Problem 3 :

cos x - ๐œ‹2

Solution :

cos (A - B) = cos A cos B + sin A sin Bcos x - ๐œ‹2 =cos x cos ๐œ‹2 + sin x sin ๐œ‹2 We know that, cos ๐œ‹2 =0sin ๐œ‹2 = 1 cos x - ๐œ‹2 =cos x ร— 0 + sin x ร— (1)cos x - ๐œ‹2 = sin x

Problem 4 :

sin (ฯ€  + x)

Solution :

sin (A + B) = sin A cos B + sin B cos A 

sin (ฯ€ + x) = sin ฯ€ cos x + sin x cos ฯ€ 

We know that,

sin ฯ€ = 0

cos ฯ€ = -1

sin (ฯ€ + x) = 0 ร— cos x + sin x  ร— (-1)

sin (ฯ€ + x) = -sin x

Problem 5 :

sin (60ยบ - ฮธ) + sin (60ยบ + ฮธ) 

Solution :

sin (A - B) + sin (A + B)  = 2 sin A cos B

sin (60ยบ - ฮธ) + sin (60ยบ + ฮธ)  =  2 sin 60ยบ cos ฮธ

= 2 (โˆš3/2) cos ฮธ

= โˆš3 cos ฮธ

sin (60ยบ - ฮธ) + sin (60ยบ + ฮธ)  = โˆš3 cos ฮธ

Problem 6 :

cos (60ยบ - ฮธ) + cos (60ยบ + ฮธ) 

Solution :

cos (A - B) + cos (A + B)  = 2 cos A cos B

cos (60ยบ - ฮธ) + cos (60ยบ + ฮธ)  = = 2 cos 60ยบ cos ฮธ

= 2 (1/2) cos ฮธ

= cos ฮธ

cos (60ยบ - ฮธ) + coss (60ยบ + ฮธ)  = cos ฮธ

Problem 7 :

cos x - ๐œ‹4 + cos x + ๐œ‹4

Solution :

cos (A - B) + cos (A + B) = 2 cos A cos B cos x - ๐œ‹4 + cos x + ๐œ‹4 = 2 cos x cos ๐œ‹4 = 2 cos x 12Numerator and denominator multiplying by 2.= 2 cos x 12 ร— 22= 2 cos x 22= 2 cos x cos x - ๐œ‹4 + cos x + ๐œ‹4 = 2 cos x

Problem 8 :

sin x + ๐œ‹6 + sin x - ๐œ‹6

Solution :

sin (A + B) + sin (A - B) = 2 sin A cos B sin x + ๐œ‹6 + sin x - ๐œ‹6 = 2 sin x cos ๐œ‹6 = 2 sin x 32= 3 sin x sin x + ๐œ‹6 + sin x - ๐œ‹6 = 3 sin x

Problem 9 :

sin (ฮธ - 180ยบ) + sin (ฮธ + 180ยบ

Solution :

sin (A - B) + sin (A + B)  = 2 sin A cos B

sin (ฮธ - 180ยบ) + sin (ฮธ + 180ยบ)  =  2 sin ฮธ cos 180ยบ 

= 2 sin ฮธ (-1)

= -2 sin ฮธ

sin (ฮธ - 180ยบ) + sin (ฮธ + 180ยบ)  = -2 sin ฮธ

Problem 10 :

cos (90ยบ + ฮธ) + cos (90ยบ - ฮธ) 

Solution :

cos (A + B) + cos (A - B)  = 2 cos A cos B

cos (90ยบ + ฮธ) + cos (90ยบ - ฮธ)  = = 2 cos 90ยบ cos ฮธ

= 2 (0) cos ฮธ

= 0

cos (90ยบ + ฮธ) + cos (90ยบ - ฮธ)  = 0

Subscribe to our โ–ถ๏ธ YouTube channel ๐Ÿ”ด for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More