We use different ways to multiply two binomials.
i) Using distributive method
ii) Using FOIL method.
Here we are going to see how we use FOIL method to multiply two binomials.
F multiplying first terms
O multiplying outer terms
I multiplying inner terms
L multiplying last terms
Example :
(1 + 2√3) (3 - √3)
Solution :
1 and 3 are first terms
1 and -√3 are outer terms
2√3 and 3 are inner terms
2√3 and -√3 are last terms
(1 + 2√3) (3 - √3)
= 1(3) + 1(-√3) + (2√3) 3 + (2√3) (-√3)
= 3 - √3 + 6√3 - 2(3)
= 3 + 3√3 - 6
= -3 + 3√3
Expand and simplify :
Problem 1 :
(1 + √2) (2 + √2)
Solution :
(1 + √2) (2 + √2)
= 2 + √2 + 2√2 + (√2)2
= 2 + 3√2 + 2
= 4 + 3√2
So, the answer is 4 + 3√2.
Problem 2 :
(2 + √3) (2 + √3)
Solution :
(2 + √3) (2 + √3)
= 4 + 2√3 + 2√3 + (√3)2
= 4 + 4√3 + 3
= 7 + 4√3
So, the answer is 7 + 4√3.
Problem 3 :
(√3 + 2) (√3 - 1)
Solution :
(√3 + 2) (√3 - 1)
= (√3)2 - √3 + 2√3 - 2
= 3 + √3 - 2
= 1 + √3
So, the answer is 1 + √3.
Problem 4 :
(4 - √2) (3 + √2)
Solution :
(4 - √2) (3 + √2)
= 12 + 4√2 - 3√2 - (√2)2
= 12 + √2 - 2
= 10 + √2
So, the answer is 10 + √2.
Problem 5 :
(1 + √3) (1 - √3)
Solution :
(1 + √3) (1 - √3)
= 1 - √3 + √3 - (√3)2
= 1 - 3
= -2
So, the answer is -2.
Problem 6 :
(5 + √7) (2 - √7)
Solution :
(5 + √7) (2 - √7)
= 10 - 5√7 + 2√7 - (√7)2
= 10 - 3√7 - 7
= 3 - 3√7
So, the answer is 3 - 3√7.
Problem 7 :
(√5 + 2) (√5 - 3)
Solution :
(√5 + 2) (√5 - 3)
= (√5)2 - 3√5 + 2√5 - 6
= 5 - √5 - 6
= -1 - √5
So, the answer is -1 - √5.
Problem 8 :
(√7 - √3) (√7 + √3)
Solution :
(√7 -√3) (√7 + √3)
= (√7)2 + (√7) (√3) - (√3) (√7) - (√3)2
= 7 - 3
= 4
So, the answer is 4.
Problem 9 :
(2√2 + √3) (2√2 - √3)
Solution :
(2√2 + √3) (2√2 - √3)
= 4(√2)2 - 2√6 + 2√6 - (√3)2
= 8 - 3
= 5
So, the answer is 5.
Problem 10 :
(4 - √2) (3 - √2)
Solution :
(4 - √2) (3 - √2)
= 12 - 4√2 - 3√2 + (√2)2
= 12 - 7√2 + 2
= 14 - 7√2
So, the answer is 14 - 7√2.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM