Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
We use different ways to multiply two binomials.
i) Using distributive method
ii) Using FOIL method.
Here we are going to see how we use FOIL method to multiply two binomials.
F multiplying first terms
O multiplying outer terms
I multiplying inner terms
L multiplying last terms
Example :
(1 + 2√3) (3 - √3)
Solution :
1 and 3 are first terms
1 and -√3 are outer terms
2√3 and 3 are inner terms
2√3 and -√3 are last terms
(1 + 2√3) (3 - √3)
= 1(3) + 1(-√3) + (2√3) 3 + (2√3) (-√3)
= 3 - √3 + 6√3 - 2(3)
= 3 + 3√3 - 6
= -3 + 3√3
Expand and simplify :
Problem 1 :
(1 + √2) (2 + √2)
Solution :
(1 + √2) (2 + √2)
= 2 + √2 + 2√2 + (√2)2
= 2 + 3√2 + 2
= 4 + 3√2
So, the answer is 4 + 3√2.
Problem 2 :
(2 + √3) (2 + √3)
Solution :
(2 + √3) (2 + √3)
= 4 + 2√3 + 2√3 + (√3)2
= 4 + 4√3 + 3
= 7 + 4√3
So, the answer is 7 + 4√3.
Problem 3 :
(√3 + 2) (√3 - 1)
Solution :
(√3 + 2) (√3 - 1)
= (√3)2 - √3 + 2√3 - 2
= 3 + √3 - 2
= 1 + √3
So, the answer is 1 + √3.
Problem 4 :
(4 - √2) (3 + √2)
Solution :
(4 - √2) (3 + √2)
= 12 + 4√2 - 3√2 - (√2)2
= 12 + √2 - 2
= 10 + √2
So, the answer is 10 + √2.
Problem 5 :
(1 + √3) (1 - √3)
Solution :
(1 + √3) (1 - √3)
= 1 - √3 + √3 - (√3)2
= 1 - 3
= -2
So, the answer is -2.
Problem 6 :
(5 + √7) (2 - √7)
Solution :
(5 + √7) (2 - √7)
= 10 - 5√7 + 2√7 - (√7)2
= 10 - 3√7 - 7
= 3 - 3√7
So, the answer is 3 - 3√7.
Problem 7 :
(√5 + 2) (√5 - 3)
Solution :
(√5 + 2) (√5 - 3)
= (√5)2 - 3√5 + 2√5 - 6
= 5 - √5 - 6
= -1 - √5
So, the answer is -1 - √5.
Problem 8 :
(√7 - √3) (√7 + √3)
Solution :
(√7 -√3) (√7 + √3)
= (√7)2 + (√7) (√3) - (√3) (√7) - (√3)2
= 7 - 3
= 4
So, the answer is 4.
Problem 9 :
(2√2 + √3) (2√2 - √3)
Solution :
(2√2 + √3) (2√2 - √3)
= 4(√2)2 - 2√6 + 2√6 - (√3)2
= 8 - 3
= 5
So, the answer is 5.
Problem 10 :
(4 - √2) (3 - √2)
Solution :
(4 - √2) (3 - √2)
= 12 - 4√2 - 3√2 + (√2)2
= 12 - 7√2 + 2
= 14 - 7√2
So, the answer is 14 - 7√2.
Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM