Problem 1 :
Use the parallelogram given below.
1. Find the perimeter.
2. If CT = 9, find AT.
3. If m∠CDA = 60° , find m∠CBA and m∠BAD .
4. If AT = 4x – 7 and CT = –x + 13 , solve for x.
Solution :
1) Perimeter of parallelogram ABCD = AB + BC + CD + DC
= 12 + 10 + 12 + 10
= 42
2) CT = 9
In parallelogram, the diagonals will be perpendicular and bisect each other.
So, AT = 9
3. If m∠CDA = 60° , find m∠CBA and m∠BAD .
In parallelogram, opposite angles are equal. ∠CBA = 60
∠CBA + ∠BAD = 180 (co-interior angles)
60 + ∠BAD = 180
∠BAD = 180 - 60
∠BAD = 120
4. If AT = 4x – 7 and CT = –x + 13 , solve for x.
AT = CT (diagonals will bisect each other)
4x - 7 = -x + 13
4x + x = 13 + 7
5x = 20
x = 4
Problem 2 :
For problems 5-8 use the rhombus below.
5. If PS = 6 , what is the perimeter of PQRS?
6. If PQ = 3x + 7 and QR = –x + 17, solve for x.
7. If m∠PSM = 22° , find m∠RSM and m∠SPQ .
8. If m∠PMQ = 4x – 5, solve for x.
Solution :
5) In rhombus, all sides will be equal.
Perimeter of rhombus = 4(6) ==> 24
6) PQ = QR
3x + 7 = -x + 17
3x + x = 17 - 7
4x = 10
x = 2.5
7. If m∠PSM = 22° , find m∠RSM and m∠SPQ .
m∠PSM = 22° = m∠RSM
m∠SPM = m∠MPQ
In triangle SPQ,
m∠PSM + m∠SPM + m∠MPQ + m∠RSM = 180
22 + 2∠SPM + 22 = 180
2∠SPM = 180 - 44
2∠SPM = 136
∠SPM = 136/2
∠SPM = 68
∠SPQ = m∠SPM + m∠MPQ
= 68 + 68
∠SPQ = 136
8. If m∠PMQ = 4x – 5, solve for x.
In rhombus, the diagonals will be perpendicular.
4x - 5 = 90
4x = 95
x = 95/4
x = 23.75
Problem 3 :
For problems 9-12 use the quadrilateral at right.
9. If WX = YZ and WZ = XY, must WXYZ be a rectangle?
10. If m∠WZY = 90° , must WXYZ be a rectangle?
11. If the information in problems 9-10 are both true, must WXYZ be a rectangle?
12. If WY = 15 and WZ = 9, what is YZ and XZ?
Solution :
In rectangle, opposite sides will be equal and each vertex we will have 90 degree.
9. If WX = YZ and WZ = XY, must WXYZ be a rectangle?
From the given, the opposite sides are equal, it may be a parallelogram also.
10. If m∠WZY = 90° , must WXYZ be a rectangle?
If m∠WZY = 90°, then m∠ZYX = 90° (co-interior angles)
11. If the information in problems 9-10 are both true, then it must WXYZ be a rectangle
12. Given WY = 15
WY is a diagonal of the rectangle.
(WY)2 = (WZ)2 + (ZY)2
152 = 92 + (ZY)2
225 - 81 = (ZY)2
(ZY)2 = 144
ZY = 12
XZ is opposite to ZY. Then XZ = 12.
Problem 4 :
For problems 13-16 use the trapezoid at right with midpoints E and F.
13. If m∠EDC = 60° , find m∠AEF .
14. If m∠DCB = 5x + 20 and m∠ABC = 3x + 10, solve for x.
15. If AB = 6 and DC = 10, find EF.
16. If EF = 9 and DC = 15, find AB.
Solution :
13. AB, EF and DC are parallel.
m∠EDC = 60° = m∠AEF = 60°
14. m∠DCB = 5x + 20 -----(1)
m∠ABC = 3x + 10 -----(2)
(1) = (2)
5x + 20 = 3x + 10
5x - 3x = 10 - 20
2x = -10
x = -5
15. If AB = 6 and DC = 10, find EF.
Problem 5 :
For problems 17-20 use the kite given below.
17. If m∠XWZ = 95° , find m∠XYZ.
18. If WZ = 5 and WT = 4, find ZT.
19. If WT = 4, TZ = 3, and TX = 10, find the perimeter of WXYZ.
Solution :
17. m∠XWZ = 95° = m∠XYZ.
18. In triangle ZWX.
m∠WXY = 40°/2
m∠WXT = 20
∠WZT + ∠WXT + ∠ZWX = 180
110 + 20 + ∠ZWX = 180
∠ZWX = 180 - 130
∠ZWX = 50
19. If WZ = 5 and WT = 4, find ZT.
In triangle WZT.
WY and ZX are perpendicular.
(ZT)2 + (TW)2 = (ZW)2
(ZT)2 + 42 = 52
(ZT)2 = 25 - 16
(ZT)2 = 9
ZT = 3
20. If WT = 4, TZ = 3, and TX = 10, find the perimeter of WXYZ.
In triangle WZT
(ZT)2 + (TW)2 = (ZW)2
32 + 42 = (ZW)2
9 + 16 = (ZW)2
(ZW)2 = 25
ZW = 5
In triangle WTX
(WT)2 + (TX)2 = (WX)2
42 + 102 = (WX)2
16 + 100 = (WX)2
(WX)2 = 116
WX = √116
Perimeter = ZW + WX + XY + ZY
= 2(ZW) + 2(WX)
= 2(5) + 2√116
= 10 + 2√116
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM