USE PROPERTIES OF QUADRILATERALS TO SOLVE PROBLEMS

Problem 1 :

Use the parallelogram given below.

using-properties-ofquadrilateral-q1

1. Find the perimeter.

2. If CT = 9, find AT.

3. If mCDA = 60° , find mCBA and mBAD .

4. If AT = 4x – 7 and CT = –x + 13 , solve for x.

Solution :

1) Perimeter of parallelogram ABCD = AB + BC + CD + DC

= 12 + 10 + 12 + 10

= 42

2)  CT = 9

In parallelogram, the diagonals will be perpendicular and bisect each other.

So, AT = 9

3. If mCDA = 60° , find mCBA and mBAD .

In parallelogram, opposite angles are equal. CBA = 60

CBA + BAD = 180 (co-interior angles)

60 + BAD = 180

BAD = 180 - 60

BAD = 120

4. If AT = 4x – 7 and CT = –x + 13 , solve for x.

AT = CT (diagonals will bisect each other)

4x - 7 = -x + 13

4x + x = 13 + 7

5x = 20

x = 4

Problem 2 :

using-properties-ofquadrilateral-q2.png

For problems 5-8 use the rhombus below.

5. If PS = 6 , what is the perimeter of PQRS?

6. If PQ = 3x + 7 and QR = –x + 17, solve for x.

7. If mPSM = 22° , find mRSM and mSPQ .

8. If mPMQ = 4x – 5, solve for x.

Solution :

5)  In rhombus, all sides will be equal.

Perimeter of rhombus = 4(6) ==> 24

6)  PQ = QR

3x + 7 = -x + 17

3x + x = 17 - 7

4x = 10

x = 2.5

7. If mPSM = 22° , find mRSM and mSPQ .

mPSM = 22° = m∠RSM

m∠SPM =  m∠MPQ

In triangle SPQ,

mPSM + m∠SPM + m∠MPQ + m∠RSM = 180

22 + 2∠SPM + 22 = 180

2∠SPM = 180 - 44

2∠SPM = 136

∠SPM = 136/2

∠SPM = 68

SPQ = m∠SPM + m∠MPQ

= 68 + 68

SPQ = 136

8. If mPMQ = 4x – 5, solve for x.

In rhombus, the diagonals will be perpendicular.

4x - 5 = 90

4x = 95

x = 95/4

x = 23.75

Problem 3 :

For problems 9-12 use the quadrilateral at right.

using-properties-ofquadrilateral-q3.png

9. If WX = YZ and WZ = XY, must WXYZ be a rectangle?

10. If mWZY = 90° , must WXYZ be a rectangle?

11. If the information in problems 9-10 are both true, must WXYZ be a rectangle?

12. If WY = 15 and WZ = 9, what is YZ and XZ?

Solution :

In rectangle, opposite sides will be equal and each vertex we will have 90 degree.

9. If WX = YZ and WZ = XY, must WXYZ be a rectangle?

From the given, the opposite sides are equal, it may be a parallelogram also. 

10. If mWZY = 90° , must WXYZ be a rectangle?

If mWZY = 90°, then m∠ZYX = 90° (co-interior angles)

11. If the information in problems 9-10 are both true, then it must WXYZ be a rectangle

12. Given WY = 15

WY is a diagonal of the rectangle.

(WY)2 = (WZ)2 + (ZY)2

152 = 92 + (ZY)2

225 - 81 = (ZY)2

(ZY)2 = 144

ZY = 12

XZ is opposite to ZY. Then XZ = 12.

Problem 4 :

using-properties-ofquadrilateral-q4.png

For problems 13-16 use the trapezoid at right with midpoints E and F.

13. If mEDC = 60° , find mAEF .

14. If mDCB = 5x + 20 and mABC = 3x + 10, solve for x.

15. If AB = 6 and DC = 10, find EF.

16. If EF = 9 and DC = 15, find AB.

Solution :

13. AB, EF and DC are parallel.

mEDC = 60° = m∠AEF = 60°

14. mDCB = 5x + 20 -----(1)

mABC = 3x + 10 -----(2)

(1) = (2)

5x + 20 = 3x + 10

5x - 3x = 10 - 20

2x = -10

x = -5

15. If AB = 6 and DC = 10, find EF.

Problem 5 :

For problems 17-20 use the kite given below.

using-properties-ofquadrilateral-q5.png

17. If mXWZ = 95° , find mXYZ.

18. If WZ = 5 and WT = 4, find ZT.

19. If WT = 4, TZ = 3, and TX = 10, find the perimeter of WXYZ.

Solution :

17. mXWZ = 95° = mXYZ.

18.  In triangle ZWX.

mWXY = 40°/2

mWXT = 20

WZT + WXT + ∠ZWX = 180

110 + 20 + ∠ZWX = 180

∠ZWX = 180 - 130

∠ZWX = 50

19. If WZ = 5 and WT = 4, find ZT.

In triangle WZT.

WY and ZX are perpendicular.

(ZT)2 + (TW)2 = (ZW)2

(ZT)2 + 42 = 52

(ZT)2 = 25 - 16

(ZT)2 = 9

ZT = 3

20. If WT = 4, TZ = 3, and TX = 10, find the perimeter of WXYZ.

In triangle WZT

(ZT)2 + (TW)2 = (ZW)2

32 + 42 = (ZW)2

9 + 16 = (ZW)2

(ZW)2 = 25

ZW = 5

In triangle WTX

(WT)2 + (TX)2 = (WX)2

42 + 102 = (WX)2

16 + 100 = (WX)2

(WX)2 = 116

WX = √116

Perimeter = ZW + WX + XY + ZY

= 2(ZW) + 2(WX)

= 2(5) + 2√116

= 10 + 2√116

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More