Some of the rules used in logarithms,
log m + log n = log (m x n)
log m - log n = log (m / n)
log mn = n log m
loga a = 1
Write as a single logarithm in the form log k:
Problem 1 :
log 6 + log 5
Solution :
= log 6 + log 5
= log (6 × 5)
= log 30
Problem 2 :
log 10 - log 2
Solution :
= log 10 - log 2
= log (10/2)
= log 5
Problem 3 :
2 log 2 + log 3
Solution :
= 2 log 2 + log 3
= log 2² + log 3
= log 4 + log 3
= log (4 × 3)
= log 12
Problem 4 :
log 5 - 2 log 2
Solution :
= log 5 - 2 log 2
= log 5 - log 2²
= log 5 - log 4
= log (5/4)
Problem 5 :
1/2 log 4 - log 2
Solution :
= 1/2 log 4 - log 2
= log 41/2 - log 2
= log 2 - log 2
= 0
Problem 6 :
log 2 + log 3 + log 5
Solution :
= log 2 + log 3 + log 5
= log (2 × 3 × 5)
= log 30
Problem 7 :
log 20 + log (0.2)
Solution :
= log 20 + log (0.2)
= log (20 × 0.2)
= log 4
= log 22
= 2 log 2
Problem 8 :
- log 2 - log 3
Solution :
= - log 2 - log 3
= - (log 2 + log 3)
= - log (2 × 3)
= - log 6
Problem 9 :
3 log (1/8)
Solution :
= 3 log (1/8)
= 3log (1/2)3
= 3(3 log(1/2))
= 9 log(1/2)
= 9 log 2-1
= 9(-1) log 2
= -9 log 2
Problem 10 :
4 log 2 + 3 log 5
Solution :
= 4 log 2 + 3 log 5
= log 24 + log 53
= log 16 + log 125
= log (16 × 125)
= log 2000
Problem 11 :
6 log 2 - 3 log 5
Solution :
= 6 log 2 - 3 log 5
= log 26 - log 53
= log 64 - log 125
= log (64/125)
Problem 12 :
1 + log 2
Solution :
= log 10 + log 2
= log (10 × 2)
= log 20
Problem 13 :
1 - log 2
Solution :
= log 10 - log 2
= log (10/2)
= log 5
Problem 14 :
2 - log 5
Solution :
= 2 log 10 - log 5
= log 10² - log 5
= log (100/5)
= log 20
Problem 15 :
3 + log 2 + log 7
Solution :
= 3 + log 2 + log 7
= 3 + log (2 × 7)
= 3 + log 14
= 3 log 10 + log 14
= log 103 + log 14
= log (1000 × 14)
= log (14000)
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM