USE GAUSSIAN ELIMINATION TO SOLVE THE SYSTEM OF EQUATIONS

Use Gaussian elimination to determine the solution set to the given system.

Problem 1 :

x + 2y + z = 1, 3x + 5y + z = 3 and 2x + 6y + 7z = 1

Solution :

A,B 121135132671R2 R2 - 3R1 3 5 1 3 -3 -6 -3 -3 0 -1 -2 0 12110-1-202671R3 R3 - 2R1 2 6 7 1 -2 -4 -2 -2 0 2 5 -1 12110-1-20025-1R3 R3 + 2R2 0 2 5 -1 0 -2 -4 0 0 0 1 -1 A,B 12110-1-20001-1

x + 2y + z = 1 ---- (1)

-y - 2z = 0 --- (2)

z = -1 ---- (3)

Applying the value of z in (2), we get

-y - 2(-1) = 0

-y + 2 = 0

-y = -2

y = 2 

Applying the value of z = -1 and y = 2 in (1), we get

x + 2(2) - 1 = 1

x + 4 - 1 = 1

x + 3 = 1

x = 1 - 3

x = -2

So, the solution is (-2, 2, -1).

Problem 2 :

3x - y + 0z = 1, 2x + y + 5z = 4 and 7x - 5y - 8z = -3

Solution :

A,B 3-10121547-5-8-3R2 3R2 - 2R1 6 3 15 12 -6 2 0 -2 0 5 15 10 3-1010515107-5-8-3R3 3R3 - 7R1 21 -15 -24 -9 -21 7 0 -7 -------------------------------- 0 -8 -24 -16 3 -1010515100-8-24-16R3 5R3 + 8R2 0 -40 -120 -80 0 40 120 80 0 0 0 0 A,B 3-1010515100000

3x - y + 0z = 1 --- (1)

5y + 15z = 10 ---- (2)

0z = 0 --- (3)

z = 0

Applying the value of z in (2), we get

5y + 15(0) = 10

5y = 10

y = 10/5

y = 2

Applying the value of z = 0 and y = 2 in (1), we get

3x - 2 + 0z = 1

3x = 1 + 2

3x = 3

x = 3/3

x = 1

So, the solution is (1, 2, 0).

Problem 3 :

3x + 5y - z = 14, x + 2y + z = 3 and 2x + 5y + 6z = 2

Solution :

A,B 35 -11412132562R2 3R2 - R1 3 6 3 -3 -5 1 - 0 1 4 35 -114014-52562R3 3R3 - 2R1 6 15 18 6 -6 -10 2 - -------------------------------- 0 5 20 - 35 -114014-50520-22R3 R3 - 5R2 0 5 20 - 0 -5 -20 0 0 0 A,B 35 -114012-50003

3x + 5y - z = 14 ---- (1)

y + 2z = -5 --- (2)

0z = 3 --- (3)

So, the system of equation has no solutions.

Problem 4 :

6x - 3y + 3z = 12, 2x - y + z = 4 and -4x + 2y - 2z = -8

Solution :

A,B 6-3 3122-114-42-2-8R1 R161-0.5 0.522-114-42-2-8R2 R2 - 2R1 2 -1 1 -2 1 -1 - 0 0 0 1-0.5 0.520000-42-2-8R3 R3 + 4R1 -4 2 -2 -8 4 -2 2 -------------------------------- 0 0 0 1-0.5 0.5200000000

x - 0.5y + 0.5z = 2

So, the system of equation has infinitely many solutions.

Use Gaussian elimination to find the solution for the given system of equations.

Problem 5 :

2x + 5y  = 9, x + 2y - z = 3 and -3x - 4y + 7z = 1

Solution :

A,B 25 0912-13-3-471R1 R212 -132509-3-471R2 R2 - 2R1 2 5 0 9 -2 -4 2 -6 0 1 2 3 12 -130123-3-471R3 R3 + 3R1 -3 -4 7 1 3 6 -3 9 -------------------------------- 0 2 4 10 12 -13012302410R3 R3 - 2R2 0 2 4 10 0 -2 -4 -6 -------------------------------- 0 0 0 4 12 -1301230004

x + 2y - z = 3

y + 2z = 3

0z = 4

z = 0

So, the system of equation has no solutions.

Problem 6 :

The circle given by the equation x2 + y2 + ax + by + c = 0 passes through the points (-2, 0), (-1, 7) and (5, -1). Find a, b and c.

Solution :

Given, equation x2 + y2 + ax + by + c = 0 ---- (1)

(-2, 0) substitute the equation (1)

(-2)2 + (0)2 + (-2)a + 0y + c = 0

4 - 2a + c = 0

-2a + c = -4 --- (2)

(-1, 7) substitute the equation (1)

(-1)2 + (7)2 + (-1)a + 7b + c = 0

1 + 49 - a + + 7b + c = 0

50 - a + 7b + c = 0

-a + 7b + c = -50 --- (3)

(5, -1) substitute the equation (1)

(5)2 + (-1)2 + 5a + (-1)b + c = 0

25 + 1 + 5a - b + c = 0

26 + 5a  - b + c = 0

5a  - b + c = -26 --- (4)

Equation (2), (3) and (4) form the matrix form.

-201-4-171-505-11-26R1 R1-210-0.52-171-505-11-26R2 R2 + R1 -1 7 1 -50 1 0 -0.5 2 0 7 0.5 -48 10-0.52070.5-485-11-26R3 R3 - 5R1 5 -1 1 -26 -5 0 2.5 -10 -------------------------------- 0 -1 3.5 -36 10-0.52070.5-480-13.5-36R3 R27 10-0.52010.1-60-13.5-36R3 R3 + R20 -1 3.5 -36 0 1 0.1 -6 -------------------------------- 0 0 3.6 -42 10-0.52010.1-6003.6-42

x - 0.5z = 2 ---- (1)

y + 0.1z = -6 --- (2)

3.6z = -42 --- (3)

z = -42/3.6

z = -12

Applying the value of z in (2), we get

y + 0.1(-12) = -6

y - 1.2 = -6

y = -6 + 1.2

y = -4.8

y = -5 

Applying the value of z = -12 and y = -5 in (1), we get

x - 0.5(-12) = 2

x + 6 = 2

x = 2 - 6

x  = -4 

So, the solutions of a,b and c is -4, -5, -12.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More