USE FIRST DERIVATIVE TEST TO FIND EXTREMA

To find extrema using the first derivative test, we have to use the steps given below.

  • Let f(x) be the defined function on (a, b).
  • Find the first derivative of the function. That is f'(x).
  • Set f'(x) = 0, and find the critical numbers.
  • Plot those critical numbers in the number line and divide into intervals.

Applying one of the values from the interval, 

Based on the sign of f'(x), we can decide the function is increasing or decreasing on the interval.

  • If the sign of f'(x) changes from negative to positive, we can say there is relative minimum.
  • If the sign of f'(x) changes from positive to negative, we can say there is relative maximum.

Find the following :

(a) find the critical numbers of f, if any,

(b) find the open intervals on which the function is increasing or decreasing,

(c) apply the First Derivative Test to identify all relative extrema, and

(d) use a graphing utility to confirm your results.

Problem 1 :

f(x) = x2 − 8x

Solution :

f(x) = x2 − 8x

f'(x) = 2x - 8

f'(x) =  2(x - 4)

f'(x) = 0

2(x - 4) = 0

x = 4

Critical number is at x = 4

firstderivativetestmaxandminq1

Intervals are (-∞, 4) and (4, ∞)

-∞ < x < 4

x  = -5 ∈ (-∞, 4)

f'(-5) =  2(-5 - 4)

f'(-5) =  -18 < 0

4 < x < ∞

x  = 5 ∈ (4, ∞)

f'(5) =  2(5 - 4)

f'(5) =  2 > 0

  • In the interval (-∞, 4), we have negative slope. So, it is decreasing in the interval (-∞, 4).
  • In the interval (4, ∞), we have positive slope. So, it is increasing in the interval (4, ∞).

Negative --> Positive --> Relative minimum

Relative minimum at x = 4

f(4) = 42 − 8(4)

f(4) = 16 − 32

f(4) = -16

Relative minimum is (4, -16)

Problem 2 :

f(x) = -2x2 + 4x + 3

Solution :

f(x) = -2x2 + 4x + 3

f'(x) = -4x + 4

f'(x) =  -4(x - 1)

f'(x) = 0

-4(x - 1) = 0

x = 1

Critical number is at x = 1

firstderivativetestmaxandminq2

Intervals are (-∞, 1) and (1, ∞)

-∞ < x < 1

x  = 0 ∈ (-∞, 1)

f'(x) =  -4(x - 1)

f'(0) =  -4(0 - 1)

f'(0) =  4 > 0

1 < x < ∞

x  = 2 ∈ (1, ∞)

f'(2) =  -4(2 - 1)

f'(2) =  -4 < 0

  • In the interval (-∞, 1), we have positive slope. So, it is increasing in the interval (-∞, 1).
  • In the interval (1, ∞), we have negative slope. So, it is decreasing in the interval (1, ∞).

Positive --> Negative --> Relative maximum

Relative maximum x = 1

f(1) = -2(1)2 + 4(1) + 3

f(1) = -2 + 4 + 3

f(1) = -2 + 7

f(1) = 5

Relative maximum is (1, 5)

Problem 3 :

f(x) = -7x3 + 21x + 3

Solution :

f(x) = -7x3 + 21x + 3

f'(x) = -21x2 + 21

f'(x) = -21(x2 - 1)

f'(x) = 0

-21(x2 - 1) = 0

x2 - 1 = 0

x = ±1

Critical number is at x = -1 and 1

firstderivativetestmaxandminq3

Intervals are (-∞, -1), (-1, 1) and (1, ∞)

-∞ < x < -1

x  = -2 ∈ (-∞, -1)

f'(x) =  -21(x2 - 1)

f'(-2) =  -21(4 - 1)

f'(-2) =  -63 < 0

-1 < x < 1

x  = 0 ∈ (-1, 1)

f'(0) =  -21(x2 - 1)

f'(-2) =  -21(-1)

f'(-2) =  21 > 0

1 < x < ∞

x  = 2 ∈ (1, )

f'(2) =  -21(x2 - 1)

f'(2) =  -21(3)

f'(-2) =  -63 < 0

  • In the interval  (-∞, -1), we have negative slope. So, it is decreasing in the interval (-∞, -1).
  • In the interval (-1, 1), we have positive slope. So, it is increasing in the interval (-1, 1).
  • In the interval  (1, ), we have negative slope. So, it is decreasing in the interval (1, ).

Negative --> Positive --> Relative minimum

Positive --> Negative --> Relative maximum

Relative minimum at x = -1

f(-1) = -7(-1)3 + 21(-1) + 3

f(-1) = -7 - 21 + 3

f(-1) = -28 + 7

f(-1) = -21

Relative minimum is (-1, -21)

Relative maximum at x = 1

f(1) = -7(1)3 + 21(1) + 3

f(1) = -7 + 21 + 3

f(1) = -7 + 24

f(1) = 17

Relative maximum is (1, 17)

Problem 4 :

f(x) = (x - 1)2(x + 3)

Solution :

f(x) = (x - 1)2(x + 3)

Using product rule, finding the derivative. we get

u = (x - 1)2 and  v = (x + 3)

u' = 2(x - 1)  and v' = 1

f'(x) = (x - 1)2(1) + 2(x - 1)(x + 3)

f'(x) = x2- 2x + 1 + 2(x2 + 2x - 3)

f'(x) = x2- 2x + 1 + 2x2 + 4x - 6

f'(x) = 3x2 + 2x - 5

f'(x) = 3x2 + 2x - 5 = 0

(3x + 5)(x - 1) = 0

x = -5/3 and x = 1

(-∞, -5/3), (-5/3, 1) and (1, ∞)

x  = -2 ∈ (-∞, -5/3)

f'(x) =  (3x + 5)(3x - 2)

f'(-2) =  (-6 + 5)(-6 - 2)

f'(-2) =  8 > 0

x  = 0 ∈ (-5/3, 1)

f'(x) =  (3x + 5)(3x - 2)

f'(0) =  (5)(-2)

f'(0) =  -10 < 0

x  = 2 ∈ (1, ∞)

f'(x) =  (3x + 5)(3x - 2)

f'(2) =  (11)(4)

f'(2) =  44 > 0

  • In the interval (-∞, -5/3), we have positive slope. So, it is increasing in the interval (-∞, -5/3).
  • In the interval  (-5/3, 1), we have negative slope. So, it is decreasing in the interval  (-5/3, 1).
  • In the interval (1, ∞), we have positive slope. So, it is increasing in the interval  (1, ∞).

Positive --> Negative --> Relative maximum

Negative --> Positive --> Relative minimum 

Relative maximum at x = -5/3

f(-5/3) = (-5/3 - 1)2(-5/3 + 3)

f(-5/3) = (64/9) (4/3)

f(-5/3) = 256/27

Relative minimum is (-5/3, 256/27)

Relative maximum at x = 1

f(1) = (1 - 1)2(1 + 3)

f(1) = 0

Relative minimum is (1, 0)

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More