USE DE MOIVRES THEOREM TO FIND THE INDICATED POWER OF COMPLEX NUMBER

Use DeMoivre's Theorem to find the indicated power of the complex number. Write answers in rectangular form.

Problem 1 :

[4(cos 15° + i sin 15°)]3

Solution:

Let z = [4(cos 15° + i sin 15°)]³

z3=4 cos 𝜋12+i sin 𝜋123

Using the De Moivre's formula,

zn = rn(cos nθ + i sin nθ)

Here n = 3, r = 4 and θ = π/12

z3=43 cos 𝜋4+i sin 𝜋4

By using the calculator, we get

z3=6412+i 12

Problem 2 :       

[2(cos 10° + i sin 10°)]3

Solution:

Let z = [2(cos 10° + i sin 10°)]3

z3=2cos 𝜋18 +i sin 𝜋183

Using the De Moivre's formula,

zn = rn(cos nθ + i sin nθ)

Here n = 3, r = 2 and θ = π/18

z3=23 cos 𝜋6+i sin 𝜋6z3=832+i 12z3=43+i

Problem 3 :       

[2(cos 80° + i sin 80°)]3

Solution:

Let z = [2(cos 80° + i sin 80°)]3

z3=2cos 4𝜋9 +i sin 4𝜋93

Using the De Moivre's formula,

zn = rn(cos nθ + i sin nθ)

Here n = 3, r = 2 and θ = 4π/9

z3=23 cos 34𝜋9+i sin 34𝜋9z3=8cos4𝜋3+i sin4𝜋3z3=8-12+i -32z3=4-1-i3

Problem 4 :

[2(cos 40° + i sin 40°)]3

Solution:

Let z = [2(cos 40° + i sin 40°)]3

z3=2cos 2𝜋9 +i sin 2𝜋93

Using the De Moivre's formula,

zn = rn(cos nθ + i sin nθ)

Here n = 3, r = 2 and θ = 2π/9

z3=23 cos 32𝜋9+i sin 32𝜋9z3=8cos2𝜋3+i sin2𝜋3z3=8-12+i 32z3=4-1+i3

Problem 5 :

12cos𝜋12+i sin 𝜋126

Solution:

Using the De Moivre's formula,

zn = rn(cos nθ + i sin nθ)

Here n = 6, r = 1/2 and θ = π/12

z6=126cos 6𝜋12+i sin 6𝜋12=164cos 𝜋2+i sin 𝜋2=164(0+i)z6=164i

Problem 6 :

12cos𝜋10+i sin 𝜋105

Solution:

Using the De Moivre's formula,

zn = rn(cos nθ + i sin nθ)

Here n = 5, r = 1/2 and θ = π/10

z5=125cos 5𝜋10+i sin 5𝜋10=132cos 𝜋2+i sin 𝜋2=132(0+i)z5=132i

Problem 7 :

2cos5𝜋6+i sin 5𝜋64

Solution:

Using the De Moivre's formula,

zn = rn(cos nθ + i sin nθ)

Here n = 4, r = √2 and θ = 5π/6

z4=24cos 45𝜋6+i sin 45𝜋6=4cos 10𝜋3+i sin 10𝜋3=4-12+i -32z4=2-1-i3

Problem 8 :

3cos5𝜋18+i sin 5𝜋186

Solution:

Using the De Moivre's formula,

zn = rn(cos nθ + i sin nθ)

Here n = 6, r = √3 and θ = 5π/18

z6=36cos 65𝜋18+i sin 65𝜋18=27cos 5𝜋3+i sin 5𝜋3=2712+i -32z6=2721-i3

Problem 9 :

(1 + i)5

Solution:

Given, standard form z = (1 + i)

The polar form of the complex number z is 

(1 + i) = r cos θ + i sin θ --- (1)

Finding r :

r = √[(1)2 + (1)2]

r = √2

Finding α :

α = tan-1(1/1)

α = π/4

Since, the complex number 1 + i is positive, z lies in the first quadrant.

So, the principal value θ = π/4

By applying the value of r and θ in equation (1), we get

z=1+i=2cos 𝜋4+i sin 𝜋4z5=2cos 𝜋4+i sin 𝜋45

Using the De Moivre's formula,

zn = rn(cos nθ + i sin nθ)

Here n = 5, r = √2 and θ = π/4

z5=25cos 5𝜋4+i sin 5𝜋4=42cos 5𝜋4+i sin 5𝜋4=42-12+i -12=422(-1-i)=4(-1-i)z5=-4-4i

Problem 10 :

(1 - i)5

Solution:

Given, standard form z = (1 - i)

The polar form of the complex number z is 

(1 - i) = r cos θ + i sin θ --- (1)

Finding r :

r = √[(1)2 + (-1)2]

r = √2

Finding α :

α = tan-1(1/1)

α = π/4

Since, the complex number 1 - i is positive and negative, z lies in the fourth quadrant.

So, the principal value θ = -π/4

By applying the value of r and θ in equation (1), we get

z=1-i=2cos -𝜋4+i sin -𝜋4z5=2cos -𝜋4+i sin -𝜋45

Using the De Moivre's formula,

zn = rn(cos nθ + i sin nθ)

Here n = 5, r = √2 and θ = -π/4

z5=25cos 5-𝜋4+i sin 5-𝜋4=42cos -5𝜋4+i sin -5𝜋4=4212+i 12=422(1+i)=4(1+i)z5=4+4i

Problem 11 :

(√3 - i)6

Solution:

Given, standard form z = (√3 - i)

The polar form of the complex number z is 

(√3 - i) = r cos θ + i sin θ --- (1)

Finding r :

r = √[(√3)2 + (-1)2]

r = 2

Finding α :

α = tan-1(1/√3)

α = π/6

Since, the complex number √3 - i is positive and negative, z lies in the fourth quadrant.

So, the principal value θ = -π/6

By applying the value of r and θ in equation (1), we get

Using the De Moivre's formula,

zn = rn(cos nθ + i sin nθ)

Here n = 6, r = 2 and θ = -π/6

z6=26cos 6-𝜋6+i sin 6-𝜋6=64(cos (-𝜋)+i sin (-𝜋))=64(1)+i(0)=64

Problem 12 :

(√2 - i)4

Solution:

Given, standard form z = (√2 - i)

The polar form of the complex number z is 

(√2 - i) = r cos θ + i sin θ --- (1)

Finding r :

r = √[(√2)2 + (-1)2]

r = √3

Finding α :

α = tan-1(1/√2)

α = 

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More