SUM OF INTERIOR ANGLES OF A TRIANGLE

Sum of interior angles of a triangle is 180 degree.

Find the value of ‘’x’’.

Problem 1 :

Solution :

In triangle PQR, the sum of interior angles is 180º.

P + Q + R = 180º

47º + xº + 58º = 180º

105º + xº = 180º

Subtract 105º from both sides.

105º - 105º + xº = 180º - 105º

xº = 75º

So, the value of x is 75º.

Problem 2 :

Solution :

In triangle PQR, the sum of interior angles is 180º.

P + Q + R = 180º

96º + 21º + xº = 180º

117º + xº = 180º

Subtract 117º from both sides.

117º - 117º + xº = 180º - 117º

xº = 63º

So, the value of x is 63º.

Problem 3 :

Solution :

In triangle PQR, the sum of interior angles is 180º.

P + Q + R = 180º

90º + 31º + (3x – 1)º = 180º

90º + 31º + 3xº – 1º = 180º

120º + 3xº = 180º

Subtract 120º from both sides.

120º - 120º + 3xº = 180º - 120º

3xº = 180º - 120º

3xº = 60º

Divide both sides by 3.

3xº/3 = 60º/3

xº = 20

So, the value of x is 20º.

Problem 4 :

Solution :

In triangle PQR, the sum of interior angles is 180º.

P + Q + R = 180º

xº + 43º + 52º = 180º

95º + xº = 180º

Subtract 95º from both sides.

95º - 95º + xº = 180º - 95º

xº = 85º

So, the value of x is 85º.

Problem 5 :

Solution :

In triangle PQR, the sum of interior angles is 180º.

P + Q + R = 180º

xº + 2xº + 3xº = 180º

6xº = 180º

Divide both sides by 6.

6xº/6 = 180º/6

xº = 30º

So, the value of x is 30º.

Problem 6 :

Solution :

In triangle PQR, the sum of interior angles is 180º.

P + Q + R = 180º

90º + (2x – 2)º + (x + 5)º = 180º

90º + 2xº – 2º + xº + 5º = 180º

93º + 3xº = 180º

Subtract 93º from both sides.

93º - 93º + 3xº = 180º - 93º

3xº = 87º

Divide both sides by 3.

3xº/3 = 87º/3

xº = 29º

So, the value of x is 29º.

Problem 7 :

Solution :

In triangle PQR, the sum of interior angles is 180º.

P + Q + R = 180º

(x + 40)º + (2x – 5)º + (3x - 17)º = 180º

xº  + 40º + 2xº – 5º + 3xº - 17º = 180º

18º + 6xº = 180º

Subtract 18º from both sides.

18º - 18º + 6xº = 180º - 18º

6xº = 162º

Divide both sides by 6.

6xº/6 = 162º/6

xº = 27º

So, the value of x is 27º.

Problem 8 :

A triangle whose one angle is more than 90˚ is called ------------

Solution :

If one of the angle which is more than 90 degree then it is called obtuse triangle.

Problem 9 :

A triangle whose all the sides are of different length is called ------------

Solution :

In a triangle,

  • if three sides are equal, it is called equilateral triangle
  • if two sides are equal, it is called isosceles triangle
  • if all sides are different, it is called scalene triangle.

Problem 10 :

The sum of the lengths of the sides of a triangle is called its ----------

Solution :

The sum of lengths of all sides of a triangle is called its perimeter of triangle.

Problem 11 :

The sum of the lengths of two sides of a triangle is always ------------than the third side.

Solution :

Using triangle inequality theorem, the sum of lengths of two sides of a triangle is always greater than the third side.

Problem 12 :

An exterior angle and the adjacent interior angle form a ------------.

Solution :

An exterior angle and the adjacent interior angle form a linear pair.

Problem 13 :

The sum of all the angles of a triangle is -----------

Solution :

The sum of all the angles of a triangle is 180 degree.

Problem 14 :

In a right angled triangle the side opposite to the right angle is called ------------

Solution : 

The side which is opposite to the right angle is called hypotenuse.

Problem 15 :

A triangle can not have more than one -------- angle.

Solution :

  • A triangle may have three acture angles
  • A triangle may have one right angle
  • A triangle may have more than one obtuse angle.

Problem 16 :

Find the value’of x in given figure.

sum-of-angle-of-tri-q1

(a) 180°      (b) 55°       (c) 90°     (d) 60°

Solution :

Exterior angle = sum of remote interior angles

120 = 60 + x

120 - 60 = x

x = 60

So, the value of x is 60 degree.

Problem 17 :

An airplane leaves from Miami and travels around the Bermuda Triangle. What is the value of x?

sum-of-angle-of-tri-q2.png

a) 26.8      b) 27.2      c) 54      d) 64

Solution :

x + 62.8 + 2x - 44.8 = 180

3x + 62.8 - 44.8 = 180

3x + 18 = 180

3x = 180 - 18

3x = 162

x = 162/3

x = 54

So, the value of x is 54.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More