SUM DIFFERENCE PRODUCT AND QUOTIENT OF FUNCTIONS

Find

(i)  (f + g)(x)

(ii)  (f – g)(x)

and state the domain of each. Then evaluate f + g and f - g for the given value of x.

Problem 1 :

f(x) = -5x, g(x) = 19x; x = 16

Solution :

Given, f(x) = -5x and g(x) = 19x

x = 16

(i)  (f + g)(x) = f(x) + g(x)

(f + g)(x) = -5x + 19x

(f + g)(x) = 14x

When x = 16,

(f + g)(16) = 1416

= 14(2 2 2 2)

(f + g)(16) = 14(2)

(ii)  (f - g)(x) = f(x) - g(x)

=  -5x - 19x

(f - g)(x) = = -24x

(f - g)(16) = -2416

= -242 2 2 2

(f - g)(16) = -24(2)

(f - g)(16) = -48

Domain is set of all positive values.

Problem 2 :

f(x) = 2x, g(x) = -112x; x = -4

Solution :

Given, f(x) = 2x and  g(x) = -112x

 x = -4

(i)  (f + g)(x) = f(x) + g(x)

(f + g)(x) = 2x + (-112x)

(f + g)(x) = -102x

When, x = -4

(f + g)(-4) = -102(-4)

= -10(-8)

= 10(-2  -2  -2)

= 10(-2)

(f + g)(-4) = -20

(ii)  (f - g)(x) = f(x) - g(x)

(f - g)(x) = 2x - (-112x)

(f - g)(x) = 122x

(f - g)(-4) = 122(-4)

= 12(-8)

= -12(-2  -2  -2)

(f - g)(-4) = -12(-2)

(f - g)(-4) = 24

Problem 3 :

If f(x) = -7x + 2 and g(x) = x3 + x2, find (g · f)(x).

Solution:

(g · f)(x) = g(x)·f(x)

(g · f)(x) = (x3 + x2) · (-7x + 2)

= -7x4 + 2x3 - 7x3 + 2x2

= -7x4 - 5x3 + 2x2

Problem 4 :

If f(x) = 2x - 6 and g(x) = x2 - 5x + 6, find f(x)/g(x).

Solution:

f(x)g(x)=2x-6x2-5x+6=2(x-3)(x-2)(x-3)f(x)g(x)=2x-2

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More