Find
(i) (f + g)(x)
(ii) (f – g)(x)
and state the domain of each. Then evaluate f + g and f - g for the given value of x.
Problem 1 :
f(x) = -5∜x, g(x) = 19∜x; x = 16
Solution :
Given, f(x) = -5∜x and g(x) = 19∜x
x = 16
(i) (f + g)(x) = f(x) + g(x)
(f + g)(x) = -5∜x + 19∜x
(f + g)(x) = 14∜x
When x = 16,
(f + g)(16) = 14∜16
= 14∜(2 ⋅ 2 ⋅ 2 ⋅ 2)
(f + g)(16) = 14(2)
(ii) (f - g)(x) = f(x) - g(x)
= -5∜x - 19∜x
(f - g)(x) = = -24∜x
(f - g)(16) = -24∜16
= -24∜2 ⋅ 2 ⋅ 2 ⋅ 2
(f - g)(16) = -24(2)
(f - g)(16) = -48
Domain is set of all positive values.
Problem 2 :
f(x) = ∛2x, g(x) = -11∛2x; x = -4
Solution :
Given, f(x) = ∛2x and g(x) = -11∛2x
x = -4
(i) (f + g)(x) = f(x) + g(x)
(f + g)(x) = ∛2x + (-11∛2x)
(f + g)(x) = -10∛2x
When, x = -4
(f + g)(-4) = -10∛2(-4)
= -10∛(-8)
= 10∛(-2 ⋅ -2 ⋅ -2)
= 10(-2)
(f + g)(-4) = -20
(ii) (f - g)(x) = f(x) - g(x)
(f - g)(x) = ∛2x - (-11∛2x)
(f - g)(x) = 12∛2x
(f - g)(-4) = 12∛2(-4)
= 12∛(-8)
= -12∛(-2 ⋅ -2 ⋅ -2)
(f - g)(-4) = -12(-2)
(f - g)(-4) = 24
Problem 3 :
If f(x) = -7x + 2 and g(x) = x3 + x2, find (g · f)(x).
Solution:
(g · f)(x) = g(x)·f(x)
(g · f)(x) = (x3 + x2) · (-7x + 2)
= -7x4 + 2x3 - 7x3 + 2x2
= -7x4 - 5x3 + 2x2
Problem 4 :
If f(x) = 2x - 6 and g(x) = x2 - 5x + 6, find f(x)/g(x).
Solution:
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM