SUM AND DIFFERENCE FORMULAS OF TRIGONOMETRY

Sum and difference of formulas of trigonometry :

sin (A + B) = sin A cos B + cos A sin B

sin (A - B) = sin A cos B – cos A sin B

cos (A + B) = cos A cos B – sin A sin B

cos (A - B) = cos A cos B + sin A sin B

Problem 1 :

sin (45º) cos (15º) – cos (45º) sin (15º)

Solution :

sin (45º) cos (15º) – cos (45º) sin (15º)

sin (A - B) = sin A cos B – cos A sin B

 = sin (45º - 15º)

 = sin (30º)

= 1/2

1/2 = sin 45º cos 15º – cos 45º sin 15º

Problem 2 :

sin (53º) cos (7º) + cos (53º) sin (7º)

Solution :

sin (53º) cos (7º) + cos (53º) sin (7º)

sin (A + B) = sin A cos B + cos A sin B

 = sin (53º + 7º)

 = sin (60º)

= √3/2

√3/2 = sin 53º cos 7º + cos 53º sin 7º

Problem 3 :

cos 𝜋10cos 𝜋9 - sin 𝜋10sin 𝜋9

Solution :

cos 𝜋10cos 𝜋9 - sin 𝜋10sin 𝜋9cos (A + B) = cos A cos B - sin A sin B= cos 𝜋10 + 𝜋9 =cos 19𝜋90 cos 19𝜋90 = cos 𝜋10cos 𝜋9 - sin 𝜋10sin 𝜋9

Problem 4 :

sin 𝜋5cos 𝜋7 - cos 𝜋5sin 𝜋7

Solution :

sin 𝜋5cos 𝜋7 - cos 𝜋5sin 𝜋7sin (A - B) = sin A cos B - cos A sin B= sin 𝜋5 - 𝜋7 = sin 7𝜋35 - 5𝜋35 =sin 2𝜋35 sin 2𝜋35 = sin 𝜋5cos 𝜋7 - cos 𝜋5sin 𝜋7

Problem 5 : 

sin 13𝜋12cos 𝜋12 + cos 13𝜋12sin 𝜋12

Solution :

sin 13𝜋12cos 𝜋12 + cos 13𝜋12sin 𝜋12sin (A + B) = sin A cos B + cos A sin B= sin 13𝜋12 + 𝜋12 =sin 14𝜋12 sin 14𝜋12 =sin 13𝜋12cos 𝜋12 + cos 13𝜋12sin 𝜋12

Problem 6 :

cos 5𝜋12cos 17𝜋12 + sin 5𝜋12sin 17𝜋12

Solution :

cos 5𝜋12cos 17𝜋12 + sin 5𝜋12sin 17𝜋12cos (A - B) = cos A cos B + sin A sin B= cos 5𝜋12 - 17𝜋12 =cos -12𝜋12 = cos (-𝜋)= cos 𝜋= -1-1 = cos 5𝜋12cos 17𝜋12 + sin 5𝜋12sin 17𝜋12

Problem 7 :

sin (2A) cos (A) – cos (2A) sin (A)

Solution :

sin (2A) cos (A) – cos (2A) sin (A)

sin (A - B) = sin A cos B – cos A sin B

= sin (2A - A)

=  sin A

sin A = sin (2A) cos (A) – cos (2A) sin (A)

Problem 8 :

cos (3α) cos (α) + sin (3α) cos (α)

Solution :

cos (3α) cos (α) + sin (3α) cos (α)

cos (A - B) = cos A cos B + sin A sin B

= cos (3α - α)

= cos 2α

cos 2α = cos (3α) cos (α) + sin (3α) cos (α)

Problem 9 :

tan 32° + tan 2°1 - tan 32° tan 2°

Solution :

tan 32° + tan 2°1 - tan 32° tan 2°tan (A + B) = tan A + tan B1 - tan A tan B= tan 32° + 2°= tan 34°tan 34° = tan 32° + tan 2°1 - tan 32° tan 2°

Problem 10 :

tan 49° - tan 4°1 + tan 49° tan 4°

Solution :

tan 49° - tan 4°1 + tan 49° tan 4°tan (A - B) = tan A - tan B1 + tan A tan B= tan 49° - 4°= tan 45°= 11 = tan 49° - tan 4°1 + tan 49° tan 4°

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More