SOLVING TRIG EQUATIONS WITH COMPOUND ANGLES

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Solve each equation for ΞΈ in the interval 0 ≀ ΞΈ β‰€ 360.

Give your answers to 1 decimal place where appropriate.

Problem 1 :

sin ΞΈΒ° cos 15Β° + cos ΞΈΒ° sin 15Β° = 0.4

Solution:

sin ΞΈΒ° cos 15Β° + cos ΞΈΒ° sin 15Β° = 0.4

sin (A + B) = sin A cos B + cos A sin B

sin (ΞΈ + 15) = 0.4

ΞΈ + 15 = sin-1(0.4)

ΞΈ + 15 = 23.57Β°

ΞΈ = 23.57Β° - 15Β°

ΞΈ = 8.57Β°

Problem 2 :

tan 2πœƒΒ°-tan 60Β°1+tan 2πœƒΒ° tan 60Β°=1

Solution:

tan 2πœƒΒ°-tan 60Β°1+tan 2πœƒΒ° tan 60Β°=1tan(A-B)=tanA-tanB1+tanA tanBtan(2πœƒΒ°-60Β°)=12πœƒΒ°-60Β°=tan-1(1)2πœƒΒ°-60Β°=452πœƒΒ°=45+602πœƒΒ°=105πœƒ=1052πœƒ=52.5Β°

Problem 3 :

cos (πœƒ - 60)Β° = sin πœƒΒ°

Solution:

cos (πœƒ - 60)Β° = sin πœƒΒ°

cos (πœƒ - 60)Β° = cos (90Β° - πœƒ)

(πœƒ - 60)Β° = 90Β° - πœƒ

πœƒ + πœƒ = 90 + 60

2πœƒ = 150

πœƒ = 150/2

πœƒ = 75Β°

Problem 4 :

sin (πœƒ + 30)Β° = cos (πœƒ - 45)Β° 

Solution:

sin (πœƒ + 30)Β° = cos (πœƒ - 45)Β° 

cos (90 - (πœƒ + 30)) = cos (πœƒ - 45)Β° 

cos (90 - πœƒ - 30) = cos (πœƒ - 45)Β° 

cos(60 - πœƒ) = cos (πœƒ - 45)

60 - πœƒ = πœƒ - 45

2πœƒ = 105

πœƒ = 105/2

πœƒ = 52.5Β°

Problem 5 :

3 cos (2πœƒ + 60)Β° - sin (2πœƒ - 30)Β° = 0

Solution:

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More