SOLVING RATIONAL EQUATIONS WITH FACTORING

Problem 1 :

16b2 + 16b = 1b2

Solution :

Given, 16b2 + 16b = 1b216b2 + 16b × bb = 1b216b2 + b6b2 = 1b21 + b6b2 = 1b2Multiplying b2 on each sides.1 + b6b2 × b2 = 1b2 × b21 + b6 = 1

By using cross multiplication we get,

1 + b = 6

b = 6 - 1

b = 5

Problem 2 :

b + 64b2 + 32b2 = b + 42b2

Solution :

Given, b + 64b2 + 32b2 = b + 42b2b + 64b2 + 32b2 × 22 = b + 42b2b + 64b2 + 64b2= b + 42b2b + 6 + 64b2 = b + 42b2b + 124b2 = b + 42b2Multiplying 2b2 on each sides.b + 124b2 × 2b2 = b + 42b2 × 2b2b + 122 = b + 4

By using cross multiplication we get,

b + 12 = 2(b + 4)

b + 12 = 2b + 8

2b - b = 12 - 8

b = 4

Problem 3 :

1v + 3v + 12v2 - 5v = 7v - 56v2 - 5v

Solution :

Given, 1v + 3v + 12v2 - 5v = 7v - 56v2 - 5v 1v × v - 5v - 5+ 3v + 12v2 - 5v = 7v - 56v2 - 5vv - 5v(v - 5)+ 3v + 12v2 - 5v = 7v - 56v2 - 5vv - 5v2 - 5v+ 3v + 12v2 - 5v = 7v - 56v2 - 5v v - 5 + 3v + 12v2 - 5v = 7v - 56v2 - 5v 4v + 7 v2 - 5v = 7v - 56v2 - 5vMultiplying v2 - 5v on each sides. 4v + 7 v2 - 5v × v2 - 5v = 7v - 56v2 - 5v × v2 - 5v

4v + 7 = 7v - 56

7v - 4v = 7 + 56

3v = 63

v = 63/3

v = 21

Problem 4 :

1m2 - m + 1m = 5m2 - m

Solution :

Given, 1m2 - m + 1m = 5m2 - m 1m2 - m + 1m × m - 1m - 1 = 5m2 - m 1m2 - m + m - 1m(m - 1) = 5m2 - m 1m2 - m + m - 1m2 - m = 5m2 - m1 + m - 1m2 - m = 5m2 - mMultiplying m2 - m on each sides.1 + m - 1m2 - m × m2 - m = 5m2 - m × m2 - m

By using cross multiplication we get,

1 + m - 1 = 5

m = 5

Problem 5 :

1r - 2 + 1r2 - 7r + 10 = 6r - 2

Solution :

Given, 1r - 2 + 1r2 - 7r + 10 = 6r - 21r - 2 + 1(r - 5)(r - 2) = 6r - 21r - 2 × r - 5r - 5+ 1(r - 5)(r - 2) = 6r - 2r - 5(r - 2)(r - 5) + 1(r - 5)(r - 2) = 6r - 2r - 5 + 1(r - 2)(r - 5) = 6r - 2r - 4(r - 2)(r - 5) = 6r - 2Multiplying r - 2 on each sides.r - 4(r - 2)(r - 5) × r - 2 = 6r - 2 × r - 2r - 4r - 5 = 6

By using cross multiplication we get,

r - 4 = 6(r - 5)

r - 4 = 6r - 30

6r - r = -4 + 30

5r = 26

r = 26/5

Problem 6 :

1 = v + 2v - 4 + 7v - 42v - 4

Solution :

Given, 1 = v + 2v - 4 + 7v - 42v - 4 1 = v + 2 + 7v - 42v - 4 1 = 8v - 40v - 4

By using cross multiplication we get,

v - 4 = 8v - 40

8v - v = -4 + 40

7v = 36

v = 36/7

Problem 7 :

1 + x2 - 5x - 243x = x - 63x

Solution :

Given, 1 + x2 - 5x - 243x = x - 63x11 × 3x3x + x2 - 5x - 243x = x - 63x3x3x + x2 - 5x - 243x = x - 63x3x + x2 - 5x - 243x = x - 63xMultiplying 3x on each sides.3x + x2 - 5x - 243x ×3x = x - 63x × 3x

By using cross multiplication we get,

3x + x2 - 5x - 24 = x - 6

x2 - 2x - 24 = x - 6

x2 - 2x - 24 - x + 6 = 0

x2 - 3x - 18 = 0

By using algebraic expression.

x2 - 6x + 3x - 18 = 0

x(x - 6) + 3(x - 6) = 0

(x + 3) and (x - 6) = 0

x + 3 = 0 and x - 6 = 0

x = -3, x = 6

Problem 8 :

1 = 1x2 + 2x + x - 1x

Solution :

Given, 1 =1x2 + 2x + x - 1x 1 =1x2 + 2x + x - 1x × x + 2x + 21 =1x2 + 2x + (x - 1)(x + 2)x(x + 2) 1 =1x2 + 2x + (x - 1)(x + 2)x2 + 2x 1 =1 + (x - 1)(x + 2)x2 + 2x

By using cross multiplication we get,

x2 + 2x = 1 + (x - 1)(x + 2)

x2 + 2x = 1 + x2 + 2x - x - 2

x2 + 2x - 1 - x2 - 2x + x + 2 = 0

-1 + x + 2 = 0

x + 1 = 0

x = -1

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More