SOLVING POLYNOMIAL EQUATIONS USING RATIONAL ROOT THEOREM

Let an xn + ...........+ a1x + a0

with an ≠ 0 and a0 ≠ 0 be a polynomial with integer coefficients.

If p/q with (p, q) = 1, is a root of the polynomial, then p is a factor of a0 and q is a factor of an.

As an example let us consider the equation x2 - 5x - 6 = 0. The divisors of 6 are ±1,  ±2,  ±3,  ±6, from the rational root theorem

Rational Root Theorem helps us to create such a list of possible rational roots. We recall that if a polynomial has rational coefficients, then by multiplying by suitable numbers we can obtain a polynomial with integer coefficients having the same roots.

So we can use Rational Root Theorem, given below, to guess a few roots of polynomial with rational coefficient. We state the theorem without proof.

Problem 1 :

Solve the equation

x3 - 5x2 - 4x + 20 = 0

Solution :

an = 1 and a0 = 20

Factor of a0, values of p = 1, 2, 4, 5, 10, 20

Factor of avalues of q = 1

p/q = ±1, ±2, ±4, ±5, ±10, ±20

f(1) = 13 - 5(1)2 - 4(1) + 20

≠ 0

f(-1) = -1 - 5 + 4 + 20

≠ 0

f(2) = 8 - 20 - 8 + 20

= 0

So, 2 is the solution. Then (x - 2) is the factor. By dividing the given polynomial by (x - 2) using synthetic division or long division, we can break up the given cubic polynomial into parts.

rational-too-theorem-q1

Quotient = x2 - 3x - 10

Factoring this quadratic polynomial, we get

(x - 5)(x + 2)

Equating each factor to zero, that is (x - 5)(x + 2) = 0

x = 5 and x = -2

So, the three solutions of the given cubic polynomial is {-2, 2, and 5}.

List all possible rational zeroes of each function.

Problem 2 :

f(x) = 3x4 - 2x2 + 6x - 10

Solution :

an = 3 and a0 = -10

Factor of a0, values of p = ±1, ±2, ±5, ±10

Factor of avalues of q = ±1, ±3

So, possible rational roots are

p/q = ±1, ±2, ±5, ±10, ±1/3, ±2/3, ±5/3, ±10/3

Problem 3 :

f(x) = x3 - 10x2 + 14x - 36

Solution :

an = 1 and a0 = -36

Factor of a0, values of p = ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18, ±36

Factor of avalues of q = ±1

So, possible rational roots are,

p/q =  ±1, ±2, ±3, ±4, ±6, ±9, ±12, ±18, ±36

Problem 4 :

f(x) = x3 + 3x2 - x + 8

Solution :

an = 1 and a0 = 8

Factor of a0, values of p = ±1, ±2, ±4, ±8

Factor of avalues of q = ±1

So, possible rational roots are,

p/q = ±1, ±2, ±4, ±8

Problem 5 :

f(x) = 5 - 7x4 + 3x2 + x -20

Solution :

f(x) = 5 - 7x4 + 3x2 + x -20

First step should be arranging the given accordingly degree.

f(x) = - 7x4 + 3x2 + x - 20 + 5

f(x) = - 7x4 + 3x2 + x - 15

an = -7 and a0 = -15

Factor of a0, values of p = ±1, ±3, ±5, ±15

Factor of avalues of q = ±1, ±7

So, possible rational roots are,

p/q = ±1, ±3, ±1/7, ±3/7, ±5/7, ±15/7

Problem 6 :

f(x) = x4 - 7x3 - 4x2 + x - 49

Solution :

f(x) = x4 - 7x3 - 4x2 + x - 49

an = 1 and a0 = -49

Factor of a0, values of p = ±1, ±7, ±49

Factor of avalues of q = ±1

So, possible rational roots are,

p/q = ±1, ±7, ±49

Problem 7 :

f(x) = 2x4 - 5x3 + 8x2 + 3x - 5

Solution :

f(x) = 2x4 - 5x3 + 8x2 + 3x - 5

an = 1 and a0 = -5

Factor of a0, values of p = ±1, ±5

Factor of avalues of q = ±1, ±2

So, possible rational roots are,

p/q = ±1, ±5, ±1/2, ±5/2

Problem 8 :

f(x) = 3x4 - 5x3 + 10x + 12

Solution :

f(x) = 3x4 - 5x3 + 10x + 12

an = 3 and a0 = 12

Factor of a0, values of p = ±1, ±2, ±3, ±4, ±6, ±12

Factor of avalues of q = ±1, ±3

So, possible rational roots are,

p/q = ±1,±2, ±4, ±6, ±12, ±1/3, ±2/3, ±4/3

Problem 9 :

f(x) = 4x5 - 2x + 18

Solution :

f(x) = 4x5 - 2x + 18

an = 4 and a0 = 18

Factor of a0, values of p = ±1, ±2, ±3, ±6, ±18

Factor of avalues of q = ±1, ±2, ±4

So, possible rational roots are,

p/q = ±1,±2, ±3, ±12, ±1/2, ±1/4, ±3/2, ±3/4, ±9/2

Problem 10 :

f(x) = 5x6 - 3x4 + 5x3 + 2x2 - 15

Solution :

f(x) = 5x6 - 3x4 + 5x3 + 2x2 - 15

an = 5 and a0 = -15

Factor of a0, values of p = ±1, ±3, ±5, ±15

Factor of avalues of q = ±1, ±5

So, possible rational roots are,

p/q = ±1, ±3, ±5, ±15, ±3/5

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More