SOLVING EXPONENTIAL EQUATIONS

In exponential equation, the variable will be at the exponent. To solve for the variable, 

  • If we see composite number in the base, try to decompose it to write it as the power of prime number.
  • Using rules in exponents, do the possible simplification.

Some of the rules are,

am x an = am + n

am / an = am - n

(am)n = am n

a0 = 1

ax = bx (then a = b)

Problem 1 :

If a and b are positive integers and 5a + b = 53c, which of the following is equal to 59c ?

a)  53a + b      b) 15a + b        c) 253a + 3b        d)  125a + b     e) 1253a + 3b

Solution :

Given that, 5a + b = 53c

To find the value of 59c, we raise power 3 on both sides.

(5a + b)3 = (53c)3

53(a + b) = 59c

(53)(a + b) = 59c

The value of 53 is 5 x 5 x 5 which is 125.

125(a + b) = 59c

Option d is correct.

Problem 2 :

(x2 y3)1/2 (x2 y3)1/3 = xa/3  ya/2

If the equation above, where a is constant is true for all positive values of x and y, what is the value of a ?

a)  2      b)  3      c)  5      d)  6

Solution :

(x2 y3)1/2 (x2 y3)1/3 = xa/3  ya/2

(x2/2 y3/2) (x2/3 y3/3) = xa/3  ya/2

(x y3/2) (x2/3 y) = xa/3  ya/2

Combining the powers, we get

x(1 + 2/3) y (3/2 + 1) = xa/3  ya/2

x5/3 y5/2 = xa/3  ya/2

Comparing the powers of corresponding terms, we get

a/3 = 5/3

a = 5

5/2 = a/2

a = 5

In both ways, we should get the same answer. So, the value of a is 5.

Problem 3 :

If 49 = (7y)2 then y could equal which of the following 

I   -1       II     1     III   7

a)  II only     b)  III only      c)  I and II      d)  I and III      d)  II and III

Solution :

Given that 49 = (7y)2 

49 = 72y2 

49 = 49y2 

Dividing by 49 on both sides

49/49 = y2

y2 = 1

y = ± 1

So, the values of y are -1 and 1. Option c is correct.

Problem 4 :

If (a6 a6)k = (a3)k + 5 , where a is a constant greater than 1, what is the value of k ?

a)  3/2      b)  5/3     c)  2       d)  3     e)  5

Solution :

(a6 a6)k = (a3)k + 5

(a6+6)k = a3(k + 5)

a12k = a3(k + 5)

Since the bases are equal, then we can equate the powers.

12k = 3(k + 5)

12k = 3k + 15

12k - 3k = 15

9k = 15

k = 15/9

k = 5/3

So, the value of k is 5/3, which is option b is correct.

Problem 5 :

If t and w are positive numbers and t8 / t2 = w12, then w8 / w2

a)  t2      b)  t3       c)  t4        d)  t6       e)  t12

Solution :

Given that, t8 / t2 = w12

t8-2 = w12

t6 = w12 ----(1)

Simplifying that we have, w8 / w2, w8-2 = w6

From (1), t6 = w12

 w12 =  t6

 (w6)2 =  t6

Moving power 2 to the other side of equal sign, we get

w6 = (t6)1/2

= t6 x 1/2

= t3

So, option b is correct.

Problem 6 :

If t > 0 and t2 − 4 = 0 , what is the value of t ?

Solution :

t2 − 4 = 0

t2 = 4

t2 = 22

t = ±2

The value of t are -2 and 2. Since the given condition is t > 0, then the value of t is 2.

Problem 7 :

If a2  = 4, then a6 = 

a)  12      b)  16       c)  24        d)  32       e)  64

Solution :

a2  = 4, then a6 = 

Raising power 3 on both sides, we get

(a2)3 = 43

a6 = 4 x 4 x 4

a6 = 64

So, the value of a6 is 64, option e is correct.

Problem 8 :

k^ (x2 + xy) k^ (y2 + xy) = k25

In the equation above, k > 1 and x = 3 what is the positive value of y ?

a)  1      b)  2       c)  4        d)  5

Solution :

k^ (x2 + xy) k^ (y2 + xy) = k25

Using the rule in exponents,

k(x^2 + xy) + (y^2 + xy) = k25

k(x^2 + xy + y^2 + xy) = k25

k(x^2 + 2xy + y^2) = k25

k(x + y)^2 = k25

By equating the powers, we get

(x + y)2 = 25

By applying the value of x as 3, we get

(3 + y)2 = 25

3 + y = √25

3 + y = 5 (since we apply the positive value for y)

y = 5 - 3

y = 2

So, option b is correct.

Problem 9 :

If 3x - y = 12, what is the value of 8x/2y ?

a)  212      b)  44       c)  82 

d) The value cannot be determined from the information given

Solution :

8x/2y = (23)x/2y

23x/2y

23x - y

Applying the value 3x - y = 12 above, we get

= 212

Option a is correct.

Problem 10 :

25x/5x+3 = (1/125)x + 1

Solution :

25x/5x+3 = (1/125)x + 1

(52)x/5x+3 = (1/53)x + 1

52x/5x+3 = (5-3)x + 1

52x 5-(x+3) = 5-3(x + 1)

52x - (x + 3) = 5-3(x + 1)

52x - x - 3 = 5-3x - 3

5x - 3 = 5-3x - 3

x  - 3 = -3x - 3

x + 3x = -3 + 3

4x = 0

x = 0

So, the value of x is 0.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More