SOLVING EXPONENTIAL EQUATIONS USING LOGARITHMS
The logarithm (or simply, log) of a positive number is its power of 10.
This means that any positive number a can be written in base 10 as a = 10log a.
Solve for x using logarithms:
Problem 1 :
2x = 100
Solution :
Problem 2 :
(1.12)x = 3
Solution :
(1.12)x=310log 1.12x=10log 3x×log 1.12 = log 3x = log 3log 1.12x = 0.4770.049x=9.694
Problem 3 :
2x = 3
Solution:
2x=310log 2x=10log 3x×log 2 = log 3x = log 3log 2x = 0.47710.3010x=1.585
Problem 4 :
2x = 10
Solution:
2x=1010log 2x=10log 10x×log 2 = log 10x = log 10log 2x = 10.3010x=3.322
Problem 5 :
2x = 400
Solution:
2x=40010log 2x=10log 400x×log 2 = log 400x = log 400log 2x = 2.6020.3010x=8.644
Problem 6 :
2x = 0.0075
Solution:
2x=0.007510log 2x=10log 0.0075x×log 2 = log 0.0075x = log 0.0075log 2x = -2.12490.3010x=-7.059
Problem 7 :
5x = 1000
Solution:
5x=100010log 5x=103x×log 5 = 3x = 3log 5x = 30.6989x=4.292
Problem 8 :
6x = 0.836
Solution:
6x=0.83610log 6x=10log 0.836x×log 6 = log 0.836x = log 0.836log 6x = -0.0770.7781x=-0.09997
Problem 9 :
(1.1)x = 1.86
Solution:
(1.1)x=1.8610log 1.1x=10log 1.86x×log 1.1 = log 1.86x = log 1.86log 1.1x = 0.26950.0413x=6.511
Problem 10 :
(1.25)x = 3
Solution:
(1.25)x=310log 1.25x=10log 3x×log 1.25 = log 3x = log 3log 1.25x = 0.47710.0969x=4.923