SOLVING EXPONENTIAL AND LOGARITHMIC INEQUALITIES

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Exponential inequalities are inequalities in which variable expressions occur as exponents, and logarithmic inequalities are inequalities that involve logarithms of variable expressions. To solve exponential and logarithmic inequalities algebraically, use these properties. Note that the properties are true for ≤ and ≥ .

Exponential Property of Inequality :

If b is a positive real number greater than 1, then bx > by if and only if x > y, and bx < by if and only if x < y.

Logarithmic Property of Inequality :

If b, x, and y are positive real numbers with b > 1, then logb x > logb y if and only if x > y, and logb x < logb y if and only if x < y. You can also solve an inequality by taking a logarithm of each side or by exponentiating

Problem 1 :

Simplify 

Solve 3x < 20

Solution :

3x < 20

x < log3 20

Using the properties of logarithm, we get

x < log 20 / log 3

x < 1.3010 / 0.4771

x < 2.72

Problem 2 :

Simplify

log x ≤ 2

Solution :

log x ≤ 2

≤ 102

≤ 100

Because log x is only defined when x > 0, the solution is 0 < x ≤ 100.

Problem 3 :

Solve the inequality.

a) ex < 2

b) 102x - 6 > 3

c) log x + 9 <  45

d) 2 ln x − 1 > 4

Solution :

a) ex < 2

x < ln 2

x < 0.69

b) 102x - 6 > 3

2x - 6 > log 3 

2x - 6 > 0.477

2x > 0.477 + 6

2x > 6.477

x > 6.477/2

x > 3.2385

So, the possible solution is 3.2385 < x < ∞.

c) log x + 9 <  45

log x < 45 - 9

log x < 36

x < 1036

So, the solution is 0 < x < 1036

d) 2 ln x − 1 > 4

2 ln x > 4 + 1

2 ln x > 5

ln x > 5/2

ln x > 2.5

x > e2.5

x > 12.18

So, the solution is 12.18 < x <

Problem 4 :

What is the solution to the logarithmic inequality −4 log2 x ≥ −20?

a) x ≤ 32      b) 0 ≤ x ≤ 32     c)  0 < x ≤ 32     d) x ≥ 32

Solution :

−4 log2 x ≥ −20

Dividing by -4, we get 

log2 5

 25

 32

Do remember : log 1 = 0, log 0 = undefined

So, 0 is not possible value of x, 0 < x ≤ 32. then option c is correct.

Problem 5 :

Solve 9x > 54

Solution :

9x > 54

x > log9 54

Using the properties of logarithms,

x > log 54 / log 9

x > 1.732/0.954

x > 1.81

So, the possible solution is 1.81 < x < ∞.

Problem 6 :

Solve 4x  36

Solution :

4x  36

log4 36

Using the properties of logarithms,

log 36 / log 4

 1.556 / 0.602

 2.58

So, the possible solution is 0 < x  2.58

Problem 7 :

Solve ln x ≥ 3

Solution :

ln x ≥ 3

≥ e3

x ≥ 20.08

So, the possible solution is 20.08  x < ∞.

Problem 8 :

Solve log4 x < 4

Solution :

log4 x < 4

x < 44

x < 256

So, the solution is 0 < x < 256.

Problem 9 :

log√3 (x + 1) - log√3 (x - 1) < log3 4

Solution :

log√3 (x + 1) - log√3 (x - 1) < log3 4

Using properties of logarithm,

log m - log n = log (m/n)

log√3 [(x + 1)/(x - 1)] < log3 4

1/log [(x + 1)/(x - 1)]√3 < log3 4

1/log [(x + 1)/(x - 1)](3)1/2 < log3 4

2/log [(x + 1)/(x - 1)](3) < log3 4

2 log3[(x + 1)/(x - 1)] < log3 4

Dividing by 2 on both sides, we get

log3[(x + 1)/(x - 1)] < (log3 4) / 2

log3[(x + 1)/(x - 1)] < (1/2) log3 4

log3[(x + 1)/(x - 1)] < log3 √4

log3[(x + 1)/(x - 1)] < log3 2

(x + 1)/(x - 1) < 2

Subtracting 2 on both sides, we get

[(x + 1) / (x - 1)] - 2 < 0

[x + 1 - 2(x - 1)] / (x - 1) < 0

(x + 1 - 2x + 2) / (x - 1) < 0

(-x + 3) / (x - 1) < 0

-x + 3 < 0

-x < -3

x > 3

∈ (1, 3)

Problem 10 :

log4 (2x2 + x + 1) - log2 (2x - 1) ≤ 1

Solution :

log4 (2x2 + x + 1) - log2 (2x - 1) ≤ 1

[1/log(2x2 + x + 1) 4] - log2 (2x - 1) ≤ 1

[1/log(2x2 + x + 1) 22] - log2 (2x - 1) ≤ 1

[(1/2) (1/log(2x2 + x + 1) 2)] - log2 (2x - 1) ≤ 1

[log2 (2x2 + x + 1)] - 2log2 (2x - 1)]/2 ≤ 1

log2 (2x2 + x + 1)] - 2log2 (2x - 1) ≤ 2

log2 (2x2 + x + 1) - log2 (2x - 1)≤ 2

log2 [(2x2 + x + 1)/(2x - 1)2 ≤ 2

Moving logarithm to the other side, we get

[(2x2 + x + 1)/(2x - 1)2 ≤ 4

[(2x2 + x + 1)/(2x - 1)2 ] - 4 ≤ 0

[(2x2 + x + 1) - 4(2x - 1)2 ]/(2x - 1)2   ≤ 0

(2x2 + x + 1) - 4[(2x)2 - 2(2x)(1) + 12 ≤ 0

(2x2 + x + 1) - 4[4x2 - 4x + 1≤ 0

2x2 + x + 1 - 16x2 + 16x - 4 ≤ 0

- 14x2 + 17x - 3 ≤ 0

14x2 - 17x + 3  0

14x2 - 17x + 3  0

(x - 1)(14x - 3)  0

 0 and x  3/14

Finding domain of the logarithmic functions :

(2x2 + x + 1) > 0

Discriminant = b2 - 4ac 

a = 2, b = 1 and c = 1

= 12 - 4(2)(1)

= 1 - 8

= -7 < 0

log2 (2x - 1) > 0

2x - 1 > 0

2x > 1

x > 1/2

The value of x ∈ (1, ∞)

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More