Subscribe to our ā¶ļø YouTube channelš“ for the latest videos, updates, and tips.
To find the nth root of a complex number, we follow the steps given below.
Step 1 :
Write the given complex number from rectangular form to polar form.
Step 2 :
Add 2kĻ to the argument
Step 3 :
Apply De' Moivre's theorem (bring the power to inside)
Step 4 :
Put k = 0, 1, 2, ............ up to n - 1
Solve each equation in the complex number system. Express solutions in polar and rectangular form.
Problem 1 :
x6 - 1 = 0
Solution:
x6 - 1 = 0
x6 = 1
z = 1 + 0i
z = r(cos Īø + i sin Īø)
Finding the r :
r = ā(12 + 02)
r = ā1
r = 1
Finding the α :
α = tan-1(y/x)
α = tan-1(0/1)
α = tan-1(0)
α = 0
z = 1(cos 0° + i sin 0°)
Problem 2 :
x6 + 1 = 0
Solution:
x6 + 1 = 0
x6 = -1
z = -1 + 0i
z = r(cos Īø + i sin Īø)
Finding the r :
r = ā((-1)2 + 02)
r = ā1
r = 1
Finding the α :
α = tan-1(y/x)
α = tan-1(0/-1)
α = tan-1(0)
α = 0
Since, the complex number -1 + 0i is negative and positive, z lies in the second quadrant.
So, the principal value Īø = Ļ - α
Īø = Ļ - 0
Īø = Ļ
z = 1(cos Ļ + i sin Ļ)
z16=1[cos (2kš+š)+i sin (2kš+š)]16=116cos 2kš+š6+i sin 2kš+š6=cos š6(2k+1)+i sin š6(2k+1)Put k=0,1,2,3,4 and 5When k=0=cos 2(0)š+š6+i sin 2(0)š+š6=cos š6+i sin š6---(1)When k=1=cos 2(1)š+š6+i sin 2(1)š+š6=cos š2+i sin š2---(2)When k=2=cos 2(2)š+š6+i sin 2(2)š+š6=cos 5š6+i sin 5š6---(3)When k=3=cos 2(3)š+š6+i sin 2(3)š+š6=cos 7š6+i sin 7š6---(4)When k=4=cos 2(4)š+š6+i sin 2(4)š+š6=cos 3š2+i sin 3š2---(5)When k=5=cos 2(5)š+š6+i sin 2(5)š+š6=cos 11š6+i sin 11š6---(6)
Problem 3 :
x4 + 16i = 0
Solution:
x4 + 16i = 0
x4 = -16i
x=4-16i
z = 0 - 16i
z = r(cos Īø + i sin Īø)
Finding the r :
r = ā(02 + (-16)2)
r = ā256
r = 16
Finding the α :
α = tan-1(-16/0)
α = tan-1(ā)
α = 3Ļ/2
Īø = 3Ļ/2
z=16cos 3š2+ i sin 3š2z1 4=16cos 2kš+3š2+i sin 2kš+3š214Using De Moivre's theorem, bringing the power insidez1 4=1614cos 4kš+3š2+i sin 4kš+3š2=2cos š2(4k+3)+i sin š2(4k+3)Put k=0,1,2 and 3When k=0=2cos š2(4(0)+3)+i sin š2(4(0)+3)=2cos 3š2+i sin 3š2---(1)When k=1=2cos š2(4(1)+3)+i sin š2(4(1)+3)=2cos 7š2+i sin 7š2---(2)When k=2=2cos š2(4(2)+3)+i sin š2(4(2)+3)=2cos 11š2+i sin 11š2---(3)When k=3=2cos š2(4(3)+3)+i sin š2(4(3)+3)=2cos 15š2+i sin 15š2---(4)
x=532i
Subscribe to our ā¶ļø YouTube channelš“ for the latest videos, updates, and tips.