To find the nth root of a complex number, we follow the steps given below.
Step 1 :
Write the given complex number from rectangular form to polar form.
Step 2 :
Add 2kπ to the argument
Step 3 :
Apply De' Moivre's theorem (bring the power to inside)
Step 4 :
Put k = 0, 1, 2, ............ up to n - 1
Solve each equation in the complex number system. Express solutions in polar and rectangular form.
Problem 1 :
x6 - 1 = 0
Solution:
x6 - 1 = 0
x6 = 1
z = 1 + 0i
z = r(cos θ + i sin θ)
Finding the r :
r = √(12 + 02)
r = √1
r = 1
Finding the α :
α = tan-1(y/x)
α = tan-1(0/1)
α = tan-1(0)
α = 0
z = 1(cos 0° + i sin 0°)
Problem 2 :
x6 + 1 = 0
Solution:
x6 + 1 = 0
x6 = -1
z = -1 + 0i
z = r(cos θ + i sin θ)
Finding the r :
r = √((-1)2 + 02)
r = √1
r = 1
Finding the α :
α = tan-1(y/x)
α = tan-1(0/-1)
α = tan-1(0)
α = 0
Since, the complex number -1 + 0i is negative and positive, z lies in the second quadrant.
So, the principal value θ = π - α
θ = π - 0
θ = π
z = 1(cos π + i sin π)
z16=1[cos (2k𝜋+𝜋)+i sin (2k𝜋+𝜋)]16=116cos 2k𝜋+𝜋6+i sin 2k𝜋+𝜋6=cos 𝜋6(2k+1)+i sin 𝜋6(2k+1)Put k=0,1,2,3,4 and 5When k=0=cos 2(0)𝜋+𝜋6+i sin 2(0)𝜋+𝜋6=cos 𝜋6+i sin 𝜋6---(1)When k=1=cos 2(1)𝜋+𝜋6+i sin 2(1)𝜋+𝜋6=cos 𝜋2+i sin 𝜋2---(2)When k=2=cos 2(2)𝜋+𝜋6+i sin 2(2)𝜋+𝜋6=cos 5𝜋6+i sin 5𝜋6---(3)When k=3=cos 2(3)𝜋+𝜋6+i sin 2(3)𝜋+𝜋6=cos 7𝜋6+i sin 7𝜋6---(4)When k=4=cos 2(4)𝜋+𝜋6+i sin 2(4)𝜋+𝜋6=cos 3𝜋2+i sin 3𝜋2---(5)When k=5=cos 2(5)𝜋+𝜋6+i sin 2(5)𝜋+𝜋6=cos 11𝜋6+i sin 11𝜋6---(6)
Problem 3 :
x4 + 16i = 0
Solution:
x4 + 16i = 0
x4 = -16i
x=4-16i
z = 0 - 16i
z = r(cos θ + i sin θ)
Finding the r :
r = √(02 + (-16)2)
r = √256
r = 16
Finding the α :
α = tan-1(-16/0)
α = tan-1(∞)
α = 3π/2
θ = 3π/2
z=16cos 3𝜋2+ i sin 3𝜋2z1 4=16cos 2k𝜋+3𝜋2+i sin 2k𝜋+3𝜋214Using De Moivre's theorem, bringing the power insidez1 4=1614cos 4k𝜋+3𝜋2+i sin 4k𝜋+3𝜋2=2cos 𝜋2(4k+3)+i sin 𝜋2(4k+3)Put k=0,1,2 and 3When k=0=2cos 𝜋2(4(0)+3)+i sin 𝜋2(4(0)+3)=2cos 3𝜋2+i sin 3𝜋2---(1)When k=1=2cos 𝜋2(4(1)+3)+i sin 𝜋2(4(1)+3)=2cos 7𝜋2+i sin 7𝜋2---(2)When k=2=2cos 𝜋2(4(2)+3)+i sin 𝜋2(4(2)+3)=2cos 11𝜋2+i sin 11𝜋2---(3)When k=3=2cos 𝜋2(4(3)+3)+i sin 𝜋2(4(3)+3)=2cos 15𝜋2+i sin 15𝜋2---(4)