SOLVE FOR A VARIABLE INVOLVING SQUARE ROOTS

Problem 1 :

If √1369 + √(0.0615) + x = 37.25, then x is equal to 

(a) 10-1         (b) 10-2           (c) 10-3         (d) None

Solution :

√1369 + √(0.0615) + x = 37.25

37 + √(0.0615) + x = 37.25

√(0.0615) + x = 37.25 - 37

√(0.0615) + x = 0.25

Take square on both sides.

(0.0615) + x = (0.25)2

(0.0615) + x = (25/100)2

(0.0615) + x = (1/4) ⋅ (1/4)

0.0615 + x = 0.0625

x = 0.0625 - 0.0615

x = 0.001

x = 1/1000

x = 10-3

Problem 2 :

The sum of two numbers is 22 and the sum of their square is 404, then the product of the numbers is 

Solution :

Let the two numbers be x and y.

x + y = 22

x2 + y2 = 404

(x + y)2 = x2 + y2 + 2xy

Applying the given values, we get

(22)2 = 404 + 2xy

484 = 404 + 2xy

2xy = 484 - 404

2xy = 80

xy = 80/2

xy = 40

Problem 3 :

1 +x169 = 1413

Solution :

1 +x169 = 1413Take square on both sides1 +x169 = 141321 +x169 = 196169x169 = 196169 -1x169 = 196-169169x169 = 27169x = 27

Problem 4 :

What is the value of in x in the following :

x128 = 162x

Solution :

x128 = 162xDoing cross multiplication, we getx2 = 162 ×128 x2= 162× 128x2= 2×9×9×2×8×8x2=2×8×9x2=144x = 144 x = 12

Problem 5 :

If 0.13 ÷ p2 = 13, then p equals :

(a) 0.01    (b) 0.1    (c) 10    (d) 100

Solution :

0.13 ÷ p2 = 13

p2 = 13 ÷ 0.13

p2 = 1300/13

p = √100

p = 10

Problem 6 :

√3n = 729, then the value of n is 

Solution :

√3n = 729

(31/2)n = 729

3n/2 = 36

Equating the powers, we get

n/2 = 6

n = 12

Problem 7 :

If √(18 ⋅ 14 ⋅ x) = 84, then x equals.

Solution :

√(18 ⋅ 14 ⋅ x) = 84

√(3 ⋅ 3 ⋅ 2 ⋅ 2 ⋅ 7 ⋅ x) = 84

6 √7x = 84

√7x = 84/6

√7x = 14

Take square on both sides.

7x = 196

x = 196/7

x = 28

Problem 8 :

If 28x + 1426 = 3/4 of 2872, then x equals.

Solution :

28x + 1426 = 3/4 of 2872

28x + 1426 = 2154

28√x = 2154 - 1426

28√x = 728

√x = 728/28

√x = 26

x = (26)2

x = 676

Problem 9 :

If √x ÷ √441 = 0.02, then the value of x is :

Solution :

√x ÷ √441 = 0.02

√x ÷ 21 = 0.02

√x  = 0.02 (21)

√x  = 0.42

x = 0.1764

Problem 10 :

If √(x - 1) (y + 2) = 7, x and y being whole numbers, then the values of x and y respectively are

(a)  8, 5   (b)  15, 12    (c)  22, 19    (d)  none

Solution :

√(x - 1) (y + 2) = 7

Applying (a)

x = 8 and y = 5

√(8 - 1) (5 + 2) = 7

√7 ⋅ 7 = 7 (True)

Problem 11 : 

If √(0.04 x 0.4 x a) = 0.004 x 0.4 x √b, then a/b is

Solution :

√(0.04 x 0.4 x a) = 0.004 x 0.4 x √b

Take square on both sides.

0.04 x 0.4 x a = (0.004 x 0.4)2 x b

a/b = (0.004 x 0.4)2 / (0.04 x 0.4)

a/b = 0.00016

Problem 12 :

1 + 55729 = 1+x27

Solution :

1 + 55729 = 1+x27 729+55729 = 1+x27 784729 = 1+x27 2827 = 1+x27 x27 =2827-1x27 =28-2727x = 1

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More