SIMPLIFYING RATIONAL EXPRESSIONS

To simplify rational expressions, we have to eliminate the common factors.

If it is factorable, we can use factoring method to find factors and eliminate common factors. We may have to use algebraic identities to find factors. 

Simplify the rational expressions.

Example 1 :

(2x + 6) / (4x - 12)

Solution :

= 2x +64x - 12= 2(x +3)4(x -3)= (x +3)2(x -3)

Example 2 :

(x2 + 9x + 20) / (2x + 8)

Solution :

= x2+9x+202x+8= x2+4x + 5x+202(x+4)= x(x +4)+5(x + 4)2(x+4) (x+5)(x +4)2(x+4) (x+5)2

Example 3 :

(6x + 24)/(x2 +7x + 12)

Solution :

= 6x +24x2+7x+12= 6(x+4)x2+4x+3x+12= 6(x +4)x(x+4)+3(x+4) 6(x +4)(x+3)(x+4) 6(x+3)

Example 4 :

(3x + 18)/(x2+6x)

Solution :

= 3x+18x2+6x= 3(x+6)x(x+6)= 3x

Example 5 :

(3x - 12)/(3x- 12x)

Solution :

= 3x-123x2-12x= 3(x-4)3x(x-4)= 1x

Example 6 :

(x2 - 5x + 6)/(x+ 2x - 15)

Solution :

= x2-5x+6x2+2x-15= x2-2x-3x+6x2+5x-3x-15= x(x-2)-3(x-2)x(x+5)-3(x+5)= (x-2)(x-3)(x-3)(x+5)= (x-2)(x+5)

Example 7 :

(4x + 4)/(x+ 4x + 3)

Solution :

= (4x+4)x2+4x+3= 4(x+1)x2+1x+3x+3= 4(x+1)x(x+1)+3(x+1)= 4(x+1)(x+1)(x+3)= 4(x+3)

Example 8 :

(x2 - x - 12)/(x2 - 2x - 8)

Solution :

= x2-x-12x2-2x-8= x2-4x+3x-12x2-4x+2x-8= x(x-4)+3(x-4)x(x-4)+2(x-4)= (x+3)(x-4)(x-4)(x+2)= (x+3)(x+2)

Example 9 :

(x2 - 5x + 4)/(x- 4x)

Solution :

= x2-5x+4x2-4x= x2-1x-4x+4x(x-4)= x(x-1)-4(x-1)x(x-4)= (x-3)(x-4)x(x-4)= (x-3)x

Example 10 :

(x2 - x - 30)/(x- 12x + 36)

Solution :

= x2-x-30x2-12x+36= x2-6x+5x-30x2-6x-6x+36= x(x-6)+5(x-6)x(x-6)-6(x-6)= (x-6)(x+5)(x-6)(x - 6)= (x+5)(x-6)

Write and simplify a rational expression for the ratio of the perimeter of the figure to its area.

Example 11 :

simplifying-rational-exq1.png

Solution :

Perimeter of square = 4(4x)

= 16x

Area of square = (4x)2

= 16x2

Ratio between perimeter to area = 16x : 16x2

= 16x/16x2 

= 1/x

So, the required ratio is 1 : x.

Example 12 :

simplifying-rational-exq2.png

Solution :

Perimeter of rectangle = 2(x + 3 + 2x)

= 2(3x + 3)

Area of rectangle = (x + 3)2x

Ratio between perimeter and area = 2(3x + 3) : 2x(x + 3)

2(3x + 3) / 2x(x + 3)

= (3x + 3) / x(x + 3)

= (3x + 3) / (x2 + 3x)

So, the required ratio is (3x + 3) : (x2 + 3x)

Example 13 :

simplifying-rational-exq3.png

Solution :

Perimeter of triangle = 2x + 2 + x + 3 + x + 1

= 4x + 6

= 2(2x + 3)

Area of triangle = (1/2) ⋅ base ⋅ height

= (1/2) ⋅ (2x + 2) ⋅2x

= 2x (x + 1)

Ratio between perimeter ot area = 2(2x + 3) : 2x (x + 1)

= 2(2x + 3) / 2x (x + 1)

= (2x + 3) / x(x + 1)

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More