SIMPLIFY RADICAL EXPRESSIONS WITH VARIABLES

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

To simplify radical terms, we have to decompose the term that we have inside the radical as product of prime factors.

Then, we can take one value out of the radical sign for every two same values which are multiplied inside the radical sign.

36= 2×2×3×3= 2 × 3= 6

Add and subtract like radicals :

a+ 2a = 3 a

Multiply radical terms :

a a = aab ×cd = acdbab ×cb = acb×b acb

Divide radical terms :

ab= ab

Note :

The same rules to be followed, when we have variables.

Simplify the expressions. Assume all variables represent positive rational number.

Problem 1 :

y5/27y3

Solution :

y5 = ∛(y ∙ y ∙ y ∙ y ∙ y)

27y3 = ∛(3 ∙ 3 ∙ 3 ∙ y ∙ y ∙ y)

y5/27y3 = (y³ ∙ y²) / (3³ ∙ y³)

= y² ∙ y / 3y

= y²/3

Problem 2 :

16z3

Solution :

16z3 = ∛(2 ∙ 2 ∙ 2 ∙ 2 ∙ z ∙ z ∙ z)

= 2 2 ∙ z

= 2z 2

Problem 3 :

16a3

Solution :

16a3 = ∛(2 ∙ 2 ∙ 2 ∙ 2 ∙ a ∙ a ∙ a)

= 2 2 ∙ a

= 2a 2

Problem 4 :

b4/27b

Solution :

b4 = ∛(b ∙ b ∙ b ∙ b)

27b = ∛(3 ∙ 3 ∙ 3 ∙ b)

b4/27b = (b³ ∙ b) / (3³ ∙ b)

= b/3

Problem 5 :

x5/x²

Solution :

x5 = ∛(x ∙ x ∙ x ∙ x ∙ x)

x² = ∛(x ∙ x)

x5/x² = (x³ ∙ x²) / (x²)

=

= x

Problem 6 :

15m4n22

Solution :

= ∛15m4n22

= [(15 m m m m) (n³ n³ n³ n³ n³ n³ n³ n)]

15m4n22 = mn7 15mn

Problem 7 :

y11/y²

Solution :

y11 = ∙ y³ ∙ y³ ∙ y ∙ y

y² = y ∙ y

y11/y² = (y³ ∙ y³ ∙ y³ ∙ y ∙ y) / (y ∙ y)

= y³

Problem 8 :

20s15 t11

Solution :

= ∛20s15 t11

= [(20 s³ s³ s³ s³ s³). (t³ t³ t³ t t)]

20s15 t11 = s5 t3 20t²

Problem 9 :

32/-4

Solution :

= ∛32/∛-4

= ∛(-32/4)

= ∛-8

= -2

Problem 10 :

162x5/3x²

Solution :

= 162x5/3x²

= 54x³

= (3³ 2x³)

= 3³  2 x x x)

= 3x 2

= 3 2x

Problem 11 :

√12x4/√3x

Solution :

= √12x4/√3x

= (√12x4 × √3) / (√3x × √3)

= √36x4/√9x

= 6x²/3x

= 2x

Problem 12 :

80n5

Solution :

= 80n5

= (2³ × 10n² × n³)

= 2³ × 10n² ×

= 2n 10n²

Problem 13 :

p17q18

Solution :

= p17q18

= (p³ ∙ p³ ∙ p³ ∙ p³ ∙ p³ ∙ p²) (q³ ∙ q³ ∙ q³ ∙ q³ ∙ q³ ∙ q³)

= p5 q6

Problem 14 :

When 5 20 is written in simplest radical form, the result is k5. What is the value of k?

a)   20      b) 10      c) 7       d) 4

Solution :

= 520

Decomposing 20, we get √(2 x 2 x 5)

= 5√(2 x 2 x 5)

= 5 x 2 √5

= 10√5

k= 10√5

Comparing the corresponding terms, we get the value of k is 10.

Problem 15 :

Which expression is equivalent to 790?

a) 16 10     b) 21√10      c) 70 9         d) 630

Solution :

= 790

Decomposing 90, we get

= 7√(2 x 3 x 3 x 5)

= 7 x 3√(2 x 5)

= 21√10

Problem 15 :

Multiply 4√3(2√3 - 3√6)

a) 16 10     b) 21√10      c) 70 9         d) 630

Solution :

= 4√3(2√3 - 3√6)

Distributing 4√3, we get

4√3(2√3) - 4√3(3√6)

= 8√3√3 - 12 √3 √6

= 8(3) - 12√(3 x 6)

= 24 - 12√(3 x 3 x 2)

= 24 - (12 x 3)√2

= 24 - 36√2

Problem 16 :

Multiply (3√x - √y)2

Solution :

= (3√x - √y)2

= (3√x)2 - 2(3√x)√y + (√y)2

= 9x - 6√xy + y

Problem 17 :

Marcy received a text message from Mark asking her how old she was. In response, Marcy texted back “125^(2/3) years old.” Help Mark determine how old Marcy is.

Solution :

= 125^(2/3)

Decomposing 125, we get

= (53)2/3

= 53 x (2/3)

= 52

= 25

Problem 18 :

(1/2) √8 + (3/5) √50 - (2/3) √18

Solution :

= (1/2) √8 + (3/5) √50 - (2/3) √18

= (1/2) √(2 x 2 x 2) + (3/5) √(5 x 5 x 2) - (2/3) √(3 x 3 x 2)

= (1/2) x 2√2 + (3/5) x 5√2 - (2/3) x 3√2

= √2 + 3√2 - 2√2

= 4√2 - 2√2

= 2√2

Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More