To simplify radical terms, we have to decompose the term that we have inside the radical as product of prime factors.
Then, we can take one value out of the radical sign for every two same values which are multiplied inside the radical sign.
Add and subtract like radicals :
Multiply radical terms :
Divide radical terms :
Note :
The same rules to be followed, when we have variables.
Simplify the expressions. Assume all variables represent positive rational number.
Problem 1 :
∛y5/27y3
Solution :
∛y5 = ∛(y ∙ y ∙ y ∙ y ∙ y)
∛27y3 = ∛(3 ∙ 3 ∙ 3 ∙ y ∙ y ∙ y)
∛y5/27y3 = ∛ (y³ ∙ y²) / ∛ (3³ ∙ y³)
= ∛y² ∙ y / 3y
= ∛y²/3
Problem 2 :
∛16z3
Solution :
∛16z3 = ∛(2 ∙ 2 ∙ 2 ∙ 2 ∙ z ∙ z ∙ z)
= 2 ∛2 ∙ z
= 2z ∛2
Problem 3 :
∛16a3
Solution :
∛16a3 = ∛(2 ∙ 2 ∙ 2 ∙ 2 ∙ a ∙ a ∙ a)
= 2 ∛2 ∙ a
= 2a ∛2
Problem 4 :
∛b4/27b
Solution :
∛b4 = ∛(b ∙ b ∙ b ∙ b)
∛27b = ∛(3 ∙ 3 ∙ 3 ∙ b)
∛b4/27b = ∛ (b³ ∙ b) / ∛ (3³ ∙ b)
= b/3
Problem 5 :
∛x5/x²
Solution :
∛x5 = ∛(x ∙ x ∙ x ∙ x ∙ x)
∛x² = ∛(x ∙ x)
∛x5/x² = ∛ (x³ ∙ x²) / ∛ (x²)
= ∛ x³
= x
Problem 6 :
∛15m4n22
Solution :
= ∛15m4n22
= ∛ [(15 ∙ m ∙ m ∙ m ∙ m) (n³ ∙ n³ ∙ n³ ∙ n³ ∙ n³ ∙ n³ ∙ n³ ∙ n)]
∛15m4n22 = mn7 ∛15mn
Problem 7 :
∛y11/y²
Solution :
∛y11 = ∛y³ ∙ y³ ∙ y³ ∙ y ∙ y
∛y² = ∛y ∙ y
∛y11/y² = ∛ (y³ ∙ y³ ∙ y³ ∙ y ∙ y) / ∛ (y ∙ y)
= y³
Problem 8 :
∛20s15 t11
Solution :
= ∛20s15 t11
= ∛ [(20 ∙ s³ ∙ s³ ∙ s³ ∙ s³ ∙ s³). (t³ ∙ t³ ∙ t³ ∙ t ∙ t)]
∛20s15 t11 = s5 t3 ∛20t²
Problem 9 :
∛32/∛-4
Solution :
= ∛32/∛-4
= ∛(-32/4)
= ∛-8
= -2
Problem 10 :
∛162x5/∛3x²
Solution :
= ∛162x5/∛3x²
= ∛54x³
= ∛ (3³ ∙ 2x³)
= ∛3³ ∙ 2∙ x∙ x∙ x)
= 3x ∛2
= 3 ∛2x
Problem 11 :
√12x4/√3x
Solution :
= √12x4/√3x
= (√12x4 × √3) / (√3x × √3)
= √36x4/√9x
= 6x²/3x
= 2x
Problem 12 :
∛80n5
Solution :
= ∛80n5
= ∛ (2³ × 10n² × n³)
= ∛2³ × ∛10n² × ∛n³
= 2n ∛10n²
Problem 13 :
∛p17q18
Solution :
= ∛p17q18
= ∛ (p³ ∙ p³ ∙ p³ ∙ p³ ∙ p³ ∙ p²) (q³ ∙ q³ ∙ q³ ∙ q³ ∙ q³ ∙ q³)
= p5 q6 ∛p²
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM