Simplify the following :
Problem 1 :
(tan θ + cot θ) / tan θ
Solution :
Problem 2 :
cos2θ / (1 - sin θ)
Solution :
cos2θ / (1 - sin θ)
cos2θ = 1- sin2θ
1 can be written as 12. 12 - sin2θ is in the form of a2 - b2, the expansion of this will be (a + b) (a - b)
= 1- sin2θ / (1 - sin θ)
= (1 + sin θ) (1 - sin θ) / (1 - sin θ)
= (1 + sin θ)
Problem 3 :
(sec2θ - 1) / sec2θ
Solution :
(sec2θ - 1) / sec2θ ----(1)
Using Pythagorean identity,
sec2θ - tan2θ = 1
sec2θ - 1 = tan2θ
Applying the value in (1), we get
= tan2θ / sec2θ
= (sin2θ / cos2θ) / (1/cos2θ)
= (sin2θ / cos2θ) x (cos2θ/1)
= sin2θ
Problem 4 :
(tan θ + 1)2
Solution :
(a + b)2 = a2 + 2ab + b2
(tan θ + 1)2 = (tan θ)2 + 2(tan θ) (1) + 12
= tan2 θ + 2tan θ + 1
= 1 + tan2 θ + 2 tan θ
= sec2θ + 2 tan θ
Problem 5 :
sin2 θ - 2 sin θ + 1
Solution :
(a - b)2 = a2 - 2ab + b2
sin2 θ - 2 sin θ + 1 = (sin θ)2 - 2 sin θ x 1 + 12
= (sin θ - 1)2
Problem 6 :
Solution :
Problem 7 :
tan θ - (sec2 θ / tan θ)
Solution :
tan θ - (sec2 θ / tan θ)
= tan θ - [(1/cos2 θ) / (sin θ/cos θ)]
= tan θ - (1/cos2 θ) x (cos θ/sin θ)
= tan θ - (1/sin θ cos θ)
= (sin θ /cos θ) - (1/sin θ cos θ)
= (sin2 θ /sin θcos θ) - (1/sin θ cos θ)
= (sin2 θ - 1) / sin θcos θ
= -cos2 θ / sin θ cos θ
= -cos θ / sin θ
= -cot θ
Problem 8 :
(tan θ / cot θ) + 1
Solution :
= (tan θ / cot θ) + 1
= [(sin θ / cos θ) / (cos θ / sin θ)] + 1
= [(sin θ / cos θ) x (sin θ / cos θ)] + 1
= 1 + 1
= 2
Problem 9 :
csc θ sec θ - tan θ
Solution :
= csc θ sec θ - tan θ
= (1/sin θ)(1/cos θ) - (sin θ / cos θ)
= (1/sin θ cos θ) - (sin θ / cos θ)
= (1/sin θ cos θ) - (sin θ / sin θ cos θ)
= (1/sin θ cos θ) - (sin2 θ / sin θ cos θ)
= (1 - sin2θ) / sin θ cos θ
= cos2θ / sin θ cos θ
= cos θ / sin θ
= cot θ
Problem 10 :
sec2θ / (cot2θ + 1)
Solution :
= sec2θ / (cot2θ + 1)
= (1/cos2θ) / csc2θ
= (1/cos2θ) / (1/sin2θ)
= (1/cos2θ) x (sin2θ/1)
= (sin2θ/cos2θ)
= tan2θ
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM