SIMPLIFY COMPLEX FRACTIONS TRIGONOMETRY

Reciprocal Identities

Another form of tangent and cotangent theta

Pythagorean Identities of Trigonometry

Simplify the following :

Problem 1 :

(tan θ + cot θ) / tan θ

Solution :

Problem 2 :

cos2θ / (1 - sin θ)

Solution :

cos2θ / (1 - sin θ)

cos2θ = 1- sin2θ

1 can be written as 121- sin2θ is in the form of a2 - b2, the expansion of this will be (a + b) (a - b)

= 1- sin2θ / (1 - sin θ)

= (1 + sin θ) (1 - sin θ) / (1 - sin θ)

= (1 + sin θ)

Problem 3 :

(sec2θ - 1) / sec2θ

Solution :

(sec2θ - 1) / sec2θ ----(1)

Using Pythagorean identity,

sec2θ - tan2θ = 1

sec2θ - 1 =  tan2θ

Applying the value in (1), we get

= tan2θ  / sec2θ

= (sin2θ / cos2θ) / (1/cos2θ)

= (sin2θ / cos2θ) x (cos2θ/1)

= sin2θ

Problem 4 :

(tan θ + 1)2

Solution :

(a + b)2 = a2 + 2ab + b2

(tan θ + 1)2 = (tan θ)2 + 2(tan θ) (1) + 12

tan2 θ + 2tan θ + 1

= 1 + tan2 θ + 2 tan θ

= sec2θ + 2 tan θ

Problem 5 :

sin2 θ - 2 sin θ + 1

Solution :

(a - b)2 = a2 - 2ab + b2

sin2 θ - 2 sin θ + 1 = (sin θ)2 - 2 sin θ x 1 + 12

= (sin θ - 1)2

Problem 6 :

Solution :

Problem 7 :

tan θ - (sec2 θ / tan θ)

Solution :

tan θ - (sec2 θ / tan θ)

= tan θ - [(1/cos2 θ) / (sin θ/cos θ)]

= tan θ - (1/cos2 θ) x (cos θ/sin θ)

= tan θ - (1/sin θ cos θ)

= (sin θ /cos θ) - (1/sin θ cos θ)

= (sin2 θ /sin θcos θ) - (1/sin θ cos θ)

= (sin2 θ - 1) / sin θcos θ

= -cos2 θ  / sin θ cos θ

= -cos θ  / sin θ 

= -cot θ

Problem 8 :

(tan θ / cot θ) + 1

Solution :

= (tan θ / cot θ) + 1

= [(sin θ  / cos θ) / (cos θ / sin θ)] + 1

= [(sin θ  / cos θ) x (sin θ / cos θ)] + 1

= 1 + 1

= 2

Problem 9 :

csc θ  sec θ - tan θ

Solution :

csc θ  sec θ - tan θ

= (1/sin θ)(1/cos θ) - (sin θ / cos θ)

= (1/sin θ cos θ) - (sin θ / cos θ)

= (1/sin θ cos θ) - (sin θ / sin θ cos θ)

= (1/sin θ cos θ) - (sin2 θ / sin θ cos θ)

= (1 - sin2θ) / sin θ cos θ

= cos2θ / sin θ cos θ

= cos θ / sin θ

= cot θ

Problem 10 :

sec2θ / (cot2θ + 1)

Solution :

sec2θ / (cot2θ + 1)

= (1/cos2θ) / csc2θ

(1/cos2θ) / (1/sin2θ)

(1/cos2θ) x (sin2θ/1)

(sin2θ/cos2θ)

= tan2θ

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More