To simplify radical term, we have to identify the index of the radical.
If it is square root, for every two same values, we can take one value out of the radical sign.
If it is cube root, for every three same values, we can take one value out of the radical sign.
Problem 1 :
What is √45 in simplest form?
a. 5√3 b. 9√5 c. 3√5 d. 15√3
Solution :
√45 = √(9 × 5)
= √9 × √5
= 3√5
So, option (c) is correct.
Problem 2 :
What is √90x5 y4 in simplest radical form?
a. 10x²y² √9x b. 9x³y² √10x²y²
c. 3x²y² √10x d. 18x4y³ √5xy
Solution :
√90x5 y4 = √ (9 × 10xx4y4)
= √ (3² x4y4 10x)
= √3² √x4 √y4 √10x
= 3x²y² √10x
So, option (c) is correct.
Problem 3 :
Which radical expression when expressed in simplified form is 3√13?
a. √16 b. √39 c. √117 d. √507
Solution :
3√13 = 3 × √13
= √39
So, option (b) is correct.
Problem 4 :
Which value could replace the? to make the expression true?
√12a6b3 = 2a3b√?
a. 6b² b. 3b c. 4a³b² d. 3a²b
Solution :
= √12a6b3
= √(4 ∙ 3a6b2b)
= √(2² ∙ b²a6 ∙ 3b)
= √2² ∙ √b² ∙ √a6 ∙ √3b
= 2a³b ∙ √3b
So, option (b) is correct.
Problem 5 :
For what value of x does ∛x simplify to 4∛5?
a. 20 b. 80 c. 320 d. 460
Solution :
∛x = 4∛5
x = (4∛5)3
x = 4³ (∛5)³
x = 64 × 5
x = 320
So, option (c) is correct.
Problem 6 :
If y³ = -56, what is the value of y?
a. -2∛14 b. -8∛7 c. -2∛7 d. -7∛8
Solution :
y³ = -56
y = ∛ (-56)
y = -∛ (8 × 7)
y = - ∛8 ∛7
y = -2∛7
So, option (c) is correct.
Problem 7 :
Write the radical expression ∛-216 in simplest form.
Solution :
= ∛-216
= ∛-6 ∙ -6 ∙ -6
= -6
Problem 8 :
Which value could replace the? To make expression true?
∛486 = 3∛?
Solution :
∛486 = 3∛x
= ∛ (3³ ∙ 18)
= ∛ (3³) ∙ ∛18
= 3∛18
Problem 9 :
∛24 - 7√3
Solution :
= ∛24 - 7√3
= ∛ (2³ ∙ 3) - 7√3
= ∛ 2³ ∙ ∛3 - 7√3
= 2∛3 - 7√3
Problem 10 :
8√2 + 3√8
Solution :
= 8√2 + 3√8
= 8√2 + 3 √ (2² ∙ 2)
= 8√2 + 3 (√2² ∙ √2)
= 8√2 + 3(2 ∙ √2)
= 8√2 + 6√2
= 14√2
Problem 11 :
(-5√36) (3√2)
Solution :
= (-5√36) (3√2)
= (-5 × 6) (3√2)
= -30 × 3√2
= -90√2
Problem 12 :
(3a²√3) (a√12)
a. 3a³√15 b. 18a³ c. 4a4√12 d. 9a³√2
Solution :
= (3a²√3) (a√12)
= (3a²√3) (a√ (4 ∙ 3))
= (3a²√3) (2a√3)
= 6a³ (√3 ∙ √3)
= 6a³ (3)
= 18a³
So, option (b) is correct.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM