SIMPLEST RADICAL FORM

To simplify radical term, we have to identify the index of the radical.

If it is square root, for every two same values, we can take one value out of the radical sign.

If it is cube root, for every three same values, we can take one value out of the radical sign.

Problem 1 :

What is √45 in simplest form?

a. 5√3     b. 9√5     c. 3√5     d. 15√3

Solution :

√45 = √(9 × 5)

= √9 × √5

= 3√5

So, option (c) is correct.

Problem 2 :

What is √90x5 y4 in simplest radical form?

a. 10x²y² √9x       b. 9x³y² √10x²y²

c. 3x²y² √10x        d. 18x4y³ √5xy

Solution :

√90x5 y4 = √ (9 × 10xx4y4)

= √ (3² x4y4 10x)

= √3² √x4 √y4 √10x

= 3x²y² √10x

So, option (c) is correct.

Problem 3 :

Which radical expression when expressed in simplified form is 3√13?

a. √16     b. √39      c. √117      d. √507

Solution :

3√13 = 3 × √13

= √39

So, option (b) is correct.

Problem 4 :

Which value could replace the? to make the expression true?

√12a6b3 = 2a3b√?

a. 6b²       b. 3b      c. 4a³b²     d. 3a²b

Solution :

= √12a6b3

= √(4 ∙ 3a6b2b)

= √(2² ∙ b²a6 ∙ 3b)

= √2² ∙ √b² ∙ √a6 ∙ √3b

= 2a³b ∙ √3b

So, option (b) is correct.

Problem 5 :

For what value of x does x simplify to 45?

a. 20     b. 80      c. 320     d. 460

Solution :

x = 45

x = (45)3

x = 4³ (5)³

x = 64 × 5

x = 320

So, option (c) is correct.

Problem 6 :

If y³ = -56, what is the value of y?

a. -214    b. -87     c. -27     d. -78

Solution :

y³ = -56

y = (-56)

y = - (8 × 7)

y = - 8 7

y = -27

So, option (c) is correct.

Problem 7 :

Write the radical expression -216 in simplest form.

Solution :

= -216

= ∛-6 ∙ -6 ∙ -6

= -6

Problem 8 :

Which value could replace the? To make expression true?

486 = 3?

Solution :

486 = 3x

= (3³ ∙ 18)

= (3³) ∙ 18

= 318

Problem 9 :

24 - 7√3

Solution :

= 24 - 7√3

= (2³ ∙ 3) - 7√3

= 2³ ∙ 3 - 7√3

= 23 - 7√3

Problem 10 :

8√2 + 3√8

Solution :

= 8√2 + 3√8

= 8√2 + 3 √ (2² ∙ 2)

= 8√2 + 3 (√2² ∙ √2)

= 8√2 + 3(2 ∙ √2)

= 8√2 + 6√2

= 14√2

Problem 11 :

(-5√36) (3√2)

Solution :

= (-5√36) (3√2)

= (-5 × 6) (3√2)

= -30 × 3√2

= -90√2

Problem 12 :

(3a²√3) (a√12)

a. 3a³√15    b. 18a³    c. 4a4√12    d. 9a³√2

Solution :

= (3a²√3) (a√12)

= (3a²√3) (a√ (4 ∙ 3))

= (3a²√3) (2a√3)

= 6a³ (√3 ∙ √3)

= 6a³ (3)

= 18a³

So, option (b) is correct.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More