RELATIONSHIP BETWEEN ZEROS AND COEFFICIENTS OF A POLYNOMIAL

For a linear polynomial, there will be one zero.

If ax + b be a polynomial, then 

zero of the polynomial = -b/a

If it is quadratic polynomial, it will be in the form

y = ax2 + bx + c

Any quadratic polynomial will have two zeroes α and β

Sum of zeroes :

α + β = -b/a

Product of zeroes :

α β = c/a

If it is cubic polynomial, it will be in the form

y = ax3 + bx2 + cx + d

Any cubic polynomial will have three zeroes α, β and δ

Sum of zeroes :

α + β + δ = -b/a

Product of sum of zeroes :

αβ + βδ+ δα = c/a

Product of zeroes :

αβδ = -d/a

Problem 1 :

If α and β are zeros of p(x) = x2 + x - 1, then find 1/α+ 1/β?

Solution :

p(x) = x2 + x - 1

Here a = 1, b = 1 and c = -1

Finding 1/α+ 1/β :

Since the denominators are not same,

1/α + 1/β = (β + α)/αβ

1/α + 1/β = (α+β)/αβ -----(1)

Sum of zeroes :

α + β = -1/1 ==> -1

Product of zeroes :

α β = -1/1 ==> -1

Applying these values in (1), we get

= -1/(-1)

1/α + 1/β = 1

Problem 2 :

If one of the zeros of the cubic polynomial x3 + ax2 + bx + c is -1, then what will be the product of the other two zeros?

Solution :

Any cubic polynomial x3 + ax2 + bx + c will have three zeroes.

The zeroes are α, β and δ

Let δ = -1

Product of the roots 

α β δ = -c/1

α β δ = -c

Applying the value of δ, we get

α β (-1) = -c

α β = c ----(1)

Since -1 is one of the zero of p(x) = x3 + ax2 + bx + c 

p(-1) = (-1)3 + a(-1)2 + b(-1) + c

0 = -1 + a - b + c

c = 1 - a + b

Applying the value of c, we get

α β 1 - a + b

Problem 3 :

If α, β, γ be zeros of the polynomial 6x3 + 3x2 -5x+1, then find the value of α-1 + β-1 + γ-1?

Solution :

p(x) = 6x3 + 3x2 - 5x + 1

a = 6, b = 3, c = -5 and d = 1

α-1 + β-1 + γ-1 = 1/α + 1/β + 1/γ

α-1 + β-1 + γ-1 = (βγ + αγ + βα) / αβγ ---(1)

α β + β γ + γ α = -5/6

αβγ = -1/6

Applying the values in (1), we get

α-1 + β-1 + γ-1 = (-5/6)/(-1/6)

= (-5/6) x (-6/1)

= 5

Problem 4 :

If α, β are zeros of the quadratic polynomial

f(x) = 2x2 + 11x + 5

find

a) α4 + β4      b)1/α +1/β -2αβ

Solution :

a) α4 + β4 = (α2)2 + (β2)2

= (α2 + β2)2 - 2(αβ2)

= (α+ β2)2 - 2(α β)2

= [(α + β)2 - 2α β]2 - 2(α β) ---(1)

From f(x),  α + β = -11/2, αβ = 5/2

Applying the above values in (1), we get

 = [(-11/2)- 2(5/2)]2 - 2(5/2)2

 = [(121/4) - 5]2 - (25/2)

 = [(121 - 20)/4]2 - (25/2)

 = [101/4]2 - (25/2)

= (10201 - 200) / 16

= 10001/16

b)1/α +1/β -2αβ

= [(β + α)/αβ] - 2αβ

= [(α + β)/αβ] - 2αβ ---(2)

From f(x), α + β = -11/2, αβ = 5/2

Applying the above values in (2), we get

= [(-11/2)/(5/2)] - 2(5/2)

= -11/5 - 5

= (-11 - 25) /5

= -36/5

Problem 5 :

If the zeros of the polynomial f(x) = x3 – 3x2 - 6x + 8 are of the form a-b, a, a+b, then find all the zeros

Solution :

f(x) = x3 – 3x2 - 6x + 8 

Since the zeroes are a-b, a, a+b,

Sum of zeroes :

a - b + a + a + b = -(-3)/1

3a = 3

a = 1

Product of zeroes :

(a - b) a (a + b) = -8/1

Applying the value of a, we get

(1 - b) 1 (1 + b) = -8

1 - b2 = -8

b2 = 1 + 8

b= 9

b = 3 or -3

If a = 1 and b = 3

a - b = -2

a = 1

a + b = 4

If a = 1 and b = -3

a - b = 4

a = 1

a + b = -2

So, the required zeroes are -2, 1 and 4.

Problem 6 :

If α, β are the two zeros of the polynomial

f(y) = y2 - 8y + a and α2 + β2 = 40

find the value of ‘a’?

Solution :

f(y) = y2 - 8y + a

α + β = 8/1

α + β = 8

α  β = a/1

α  β = a

α2 + β2 = 40

(α + β)2 - 2αβ = 40

82 - 2a = 40

64 - 2a = 40

2a = 64 - 40

2a = 24

a = 12

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More