To find the derivation of one function divided by the another function, we use the quotient rule follows.
Differentiate mentally without simplification:
Problem 1 :
x / (2x - 1)
Solution :
f(x) = x, f’(x) = 0
g(x) = 2x - 1, g’(x) = 2
d/dx (f(x) / g(x)) = f’(x) g(x) - g’(x) f(x) / [g(x)]²
= 0(2x - 1) - 2(1) / (2x - 1)²
= -2 / (2x - 1)²
Problem 2 :
x³ / (x² - 4)
Solution :
f(x) = x³, f’(x) = 3x²
g(x) = x² - 4, g’(x) = 2x
d/dx (f(x) / g(x)) = f’(x) g(x) - g’(x) f(x) / [g(x)]²
= [3x²(x² - 4) - 2x(x³)] / (x² - 4)²
= [3x4 - 12x² - 2x4] / (x² - 4)²
= (x4 - 12x²) / (x² - 4)²
Problem 3 :
(x + 4) / (x - 6)
Solution :
f(x) = x + 4
f’(x) = 1
g(x) = x - 6
g’(x) = 1
d/dx (f(x) / g(x)) = f’(x) g(x) - g’(x) f(x) / [g(x)]²
= 1(x - 6) - 1(x + 4) / (x - 6)²
= (x - 6 - x - 4) / (x - 6)²
= - 10 / (x - 6)²
Problem 4 :
(2x + 5) / (4x - 3)
Solution :
f(x) = 2x + 5, f’(x) = 2
g(x) = 4x - 3, g’(x) = 4
d/dx (f(x) / g(x)) = f’(x) g(x) - g’(x) f(x) / [g(x)]²
= [2(4x - 3) - 4(2x + 5)] / (4x - 3)²
= [8x - 6 - 8x - 20] / (4x - 3)²
= -26 / (4x - 3)²
Problem 5 :
x / (2x² - 8)
Solution :
f(x) = x, f’(x) = 1
g(x) = 2x² - 8, g’(x) = 4x
d/dx (f(x) / g(x)) = f’(x) g(x) - g’(x) f(x) / [g(x)]²
= 1(2x² - 8) - 4x(x) / (2x² - 8)²
= (2x² - 8 - 4x²) / (2x² - 8)²
= (- 8 - 2x²) / (2x² - 8)²
= -(8 + 2x²) / (2x² - 8)²
Problem 6 :
(x - 7) / x²
Solution :
f(x) = x - 7, f’(x) = 1
g(x) = x², g’(x) = 2x
d/dx (f(x) / g(x)) = f’(x) g(x) - g’(x) f(x) / [g(x)]²
= 1(x²) - 2x (x - 7) / (x²)²
= [1(x²) - 2x(x - 7)] / x4
= (x² - 2x² + 14x) / x4
= (-x² + 14x) / x4
= x(-x + 14) / x4
= (14 - x) / x3
Problem 7 :
(x² + 4x - 1) / (x + 3)
Solution :
f(x) = x² + 4x - 1
f’(x) = 2x + 4
g(x) = x + 3
g’(x) = 1
d/dx (f(x) / g(x)) = f’(x) g(x) - g’(x) f(x) / [g(x)]²
= [(2x + 4) (x + 3) - 1(x² + 4x - 1)] / (x + 3)²
= [(2x2 + 6x + 4x + 12) - x² - 4x + 1] / (x + 3)²
= (2x2 - x² + 10x - 4x + 12 + 1) / (x + 3)²
= (x2 + 6x + 13) / (x + 3)²
Problem 8 :
(x² - 9x + 11) / (2x + 5)
Solution :
f(x) = x² - 9x + 11
f’(x) = 2x - 9
g(x) = 2x + 5
g’(x) = 2
d/dx (f(x) / g(x)) = f’(x) g(x) - g’(x) f(x) / [g(x)]²
= (2x - 9) (2x + 5) - 2(x² - 9x + 11) / (2x + 5)²
= (4x2 + 10x - 18x - 45 - 2x² + 18x - 22) / (2x + 5)²
= (4x2 - 2x² + 10x - 18x + 18x - 45 - 22) / (2x + 5)²
= (2x2 + 10x - 67) / (2x + 5)²
Problem 9 :
(3x - 1) / (x² + 12)
Solution :
f(x) = 3x - 1, f’(x) = 3
g(x) = x² + 12, g’(x) = 2x
d/dx (f(x) / g(x)) = f’(x) g(x) - g’(x) f(x) / [g(x)]²
= 3(x² + 12) - 2x(3x - 1) / (x² + 12)²
= (3x² + 36 - 6x2 + 2) / (x² + 12)²
= (-3x² + 38) / (x² + 12)²
Problem 10 :
(6x + 7) / (x² - x + 3)
Solution :
f(x) = 6x + 7
f’(x) = 6
g(x) = x² - x + 3
g’(x) = 2x - 1
d/dx (f(x) / g(x)) = f’(x) g(x) - g’(x) f(x) / [g(x)]²
= [6(x² - x + 3) - (2x - 1) (6x + 7)] / (x² - x + 3)²
= [6x² - 6x + 18 - (12x2 + 14x - 6x - 7] / (x² - x + 3)²
= [6x² - 6x + 18 - 12x2 + 8x - 7] / (x² - x + 3)²
= (-6x² + 2x + 11) / (x² - x + 3)²
Problem 11 :
(x³ + x) / (x² - x - 1)
Solution :
f(x) = x³ + x
f’(x) = 3x² + 1
g(x) = x² - x - 1
g’(x) = 2x - 1
d/dx (f(x) / g(x)) = f’(x) g(x) - g’(x) f(x) / [g(x)]²
= (3x² + 1) (x² - x - 1) - (2x - 1) (x³ + x) / (x² - x - 1)²
= (3x4-3x³-3x²+x²-x-1-(2x4+2x2-x3-x) / (x² - x - 1)²
= (3x4 - 2x4 - 3x3 + x3 - 2x2 - 2x2 - x + x - 1) / (x² - x - 1)²
= (x4 - 2x3 - 4x2 - 1) / (x² - x - 1)²
Problem 12 :
(5x² - 2x) / (3x + 1)
Solution :
f(x) = 5x² - 2x
f’(x) = 10x - 2
g(x) = 3x + 1
g’(x) = 3
d/dx (f(x) / g(x)) = f’(x) g(x) - g’(x) f(x) / [g(x)]²
= [(10x - 2) (3x + 1) - 3(5x² - 2x)] / (3x + 1)²
= [(30x2 + 10x - 6x - 2) - 15x² + 6x] / (3x + 1)²
= [(30x2 - 15x² + 10x - 6x + 6x - 2)] / (3x + 1)²
= (15x² + 10x- 2) / (3x + 1)²
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM