Verify the identities :
Problem 1 :
(1 + sec2 θ) / sec θ = 1 + cos2θ
Solution :
= (1 + sec2 θ) / sec θ
Using reciprocal identities,
sec2 θ = 1/ cos2 θ
= (1 + (1/ cos2 θ)) / (1/cos θ)
= [ (cos2 θ + 1) / cos θ ] / (1/cos θ)
= [ (cos2 θ + 1) / cos θ ] x (cos θ / 1)
= 1 + cos2 θ
Hence it is proved.
Problem 2 :
(sin θ / cos θ) + (cos θ / sin θ) = 1/sin θ cos θ
Solution :
= (sin θ / cos θ) + (cos θ / sin θ)
Since two fractions are added, we have to make the denominators same and add the numerators.
= (sin θ/cos θ) x (sin θ/sin θ) + (cos θ/sin θ) x (cos θ/cos θ)
= (sin2 θ/sin θ cos θ) + (cos2 θ/sin θcos θ)
= (sin2 θ + cos2 θ) / sin θ cos θ
= 1 / sin θ cos θ
Hence it is proved.
Problem 3 :
Solution :
Problem 4 :
sin2𝜃(1 + cot2𝜃) = 1
Solution :
sin2𝜃(1 + cot2𝜃) = 1
L.H.S
= sin2𝜃(1 + cot2𝜃)
= sin2𝜃(1 + (cos2𝜃/sin2𝜃) )
= sin2𝜃((sin2𝜃+cos2𝜃) / sin2𝜃 )
= (sin2𝜃+cos2𝜃)
Using Pythagorean identities, the value of (sin2𝜃+cos2𝜃) is 1
= 1
Hence proved.
Problem 5 :
Solution :
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM