PROVING TRIGONOMETRIC IDENTITIES QUESTIONS

Reciprocal Identities

Another form of tangent and cotangent theta

Pythagorean Identities of Trigonometry

Verify the identities :

Problem 1 :

(1 + sec2 θ) / sec θ = 1 + cos2θ 

Solution :

= (1 + sec2 θ) / sec θ

Using reciprocal identities,

sec2 θ = 1/ cos2 θ

= (1 + (1/ cos2 θ)) / (1/cos θ)

= [ (cos2 θ + 1) / cos θ ] / (1/cos θ)

= [ (cos2 θ + 1) / cos θ ]  x  (cos θ / 1)

= 1 + cos2 θ

Hence it is proved.

Problem 2 :

(sin θ / cos θ) + (cos θ / sin θ) = 1/sin θ cos θ

Solution :

= (sin θ / cos θ) + (cos θ / sin θ)

Since two fractions are added, we have to make the denominators same and add the numerators.

= (sin θ/cos θ) x (sin θ/sin θ) + (cos θ/sin θ) x (cos θ/cos θ)

= (sinθ/sin θ cos θ) + (cos2 θ/sin θcos θ)

= (sinθ + cos2 θ) / sin θ cos θ

= 1 / sin θ cos θ

Hence it is proved.

Problem 3 :

Solution :

Problem 4 :

sin2𝜃(1 + cot2𝜃) = 1

Solution :

sin2𝜃(1 + cot2𝜃) = 1

L.H.S

= sin2𝜃(1 + cot2𝜃)

= sin2𝜃(1 + (cos2𝜃/sin2𝜃) )

= sin2𝜃((sin2𝜃+cos2𝜃) / sin2𝜃 )

= (sin2𝜃+cos2𝜃)

Using Pythagorean identities, the value of (sin2𝜃+cos2𝜃) is 1

= 1

Hence proved.

Problem 5 :

Solution :

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More