Given the function on the left, demonstrate that the relationship is true.
Problem 1 :
For y = ex + e-x, prove that y’’ = y
Solution :
y = ex + e-x
First derivative:
y = ex + e-x
y' = ex - e-x
Second derivative:
y’’ = ex - e-x (-1)
y’’ = ex + e-x
Here ex + e-x = y
By applying the value, we get
y’’ = y
So, the given function is true.
Problem 2:
For y = 4e-x + 5e-3x, prove that y’’ + 4y’ + 3y = 0
Solution:
y = 4e-x + 5e-3x
First derivative:
y’ = 4e-x (-1) + 5e-3x (-3)
y’ = -4e-x - 15e-3x
Second derivative:
y’’ = -4e-x (-1) - 15e-3x (-3)
y’’ = 4e-x + 45e-3x
From right side,
y’’ + 4y’ + 3y
= 4e-x + 45e-3x + 4(-4e-x - 15e-3x) + 3(4e-x + 5e-3x)
= 4e-x + 45e-3x - 16e-x - 60e-3x + 12e-x + 15e-3x
= 4e-x - 16e-x+ 12e-x + 45e-3x - 60e-3x + 15e-3x
= 0
So, the given function is true.
Problem 3 :
For y = e2x + e8x, prove that y’’ - 10y’ + 16y = 0
Solution :
y = e2x + e8x
First derivative :
y' = 2e2x + 8e8x
Second derivative :
y’’ = 2e2x (2) + 8e8x(8)
y’’ = 4e2x + 64e8x
From right side,
y’’ - 10y’ + 16y
= 4e2x + 64e8x - 10(2e2x + 8e8x) + 16(e2x + e8x)
= 4e2x - 20e2x+ 16e2x + 64e8x + 16e8x - 80e8x
y’’ - 10y’ + 16y = 0
So, the given function is true.
Problem 4 :
For y = e2x + e4x, prove that y’’ - 6y’ + 8y = 0
Solution :
y = e2x + e4x
First derivative :
y' = e2x(2) + e4x(4)
y’ = 2e2x + 4e4x
Second derivative :
y’' = 2e2x(2) + 4e4x (4)
y’' = 4e2x + 16e4x
From right side,
y’’ - 6y’ + 8y = 4e2x + 16e4x - 6(2e2x + 4e4x) + 8(e2x + e4x)
= 4e2x + 8e2x - 12e2x + 16e4x + 8e4x - 24e4x
y’’ - 6y’ + 8y = 0
So, the given function is true.
Problem 5 :
For y = (x + 1) e5x, prove that y’’ - 10y’ + 25y = 0
Solution :
y = (x + 1) e5x
First derivative:
Using product rule, we can find the derivative.
u = x + 1 and v = e5x
u' = 1 and v' = 5e5x
= (1) e5x + (x + 1) e5x (5)
y’ = e5x + 5(x + 1) e5x
= e5x + 5xe5x + 5e5x
= 5xe5x + 6e5x
y’ = e5x (5x + 6)
Second derivative:
u = 5x + 6 and v = e5x
u' = 5 and v' = 5e5x
y’’ = e5x (5) + (5x + 6) e5x
(5)
= 5e5x + 5e5x (5x + 6)
= 5e5x + 25xe5x + 30e5x
= 25xe5x + 35e5x
y’’ = e5x (25x + 35)
From right side,
y’’ - 10y’ + 25y
= 25xe5x + 35e5x - 10 (5xe5x + 6e5x) + 25((x + 1) e5x)
= 25xe5x + 35e5x - 50xe5x - 60
e5x + 25xe5x + 25e5x
y’’ - 10y’ + 25y = 0
So, the given function is true.
Problem 6 :
For y = A + Be-4x, prove that y’’ + 4y’ = 0
Solution :
y = A + Be-4x
First derivative :
y' = A + Be-4x (-4)
= (0) + Be-4x (-4)
y’ = -4Be-4x
Second derivative :
y’’ = -4 Be-4x
= -4Be-4x (-4)
y’’ = 16Be-4x
From right side,
y’’ + 4y’ = 16Be-4x + 4(-4Be-4x)
= 16Be-4x - 16Be-4x
y’’ + 4y’ = 0
So, the given function is true.
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM