PROVING GIVEN RELATIONDHIP FOR THE DERIVATIVE OF EXPONENTIAL FUNCTION

Given the function on the left, demonstrate that the relationship is true.

Problem 1 :

For y = ex + e-x, prove that y’’ = y

Solution :

y = ex + e-x

First derivative:

y = ex + e-x

y' = ex - e-x

Second derivative:

y’’ = ex - e-x (-1)

y’’ = ex + e-x

Here ex + e-x = y

By applying the value, we get

y’’ = y

So, the given function is true.

Problem 2:

For y = 4e-x + 5e-3x, prove that y’’ + 4y’ + 3y = 0

Solution:

y = 4e-x + 5e-3x

First derivative:   

y’ = 4e-x (-1) + 5e-3x (-3)

y’ = -4e-x - 15e-3x

Second derivative:

y’’ = -4e-x (-1) - 15e-3x (-3)

y’’ = 4e-x + 45e-3x

From right side,

y’’ + 4y’ + 3y

= 4e-x + 45e-3x + 4(-4e-x - 15e-3x) + 3(4e-x + 5e-3x)

= 4e-x + 45e-3x - 16e-x - 60e-3x + 12e-x + 15e-3x

= 4e-x - 16e-x+ 12e-x + 45e-3x - 60e-3x + 15e-3x

= 0

So, the given function is true.

Problem 3 :

For y = e2x + e8x, prove that y’’ - 10y’ + 16y = 0

Solution :

y = e2x + e8x

First derivative :    

y' = 2e2x + 8e8x

Second derivative :

y’’ = 2e2x (2) + 8e8x(8)

y’’ = 4e2x + 64e8x

From right side,

y’’ - 10y’ + 16y

= 4e2x + 64e8x - 10(2e2x + 8e8x) + 16(e2x + e8x)

= 4e2x - 20e2x+ 16e2x + 64e8x + 16e8x - 80e8x  

y’’ - 10y’ + 16y = 0

So, the given function is true.

Problem 4 :

For y = e2x + e4x, prove that y’’ - 6y’ + 8y = 0

Solution :

y = e2x + e4x

First derivative :    

y' = e2x(2) + e4x(4)

y’ = 2e2x + 4e4x

Second derivative :

y’' = 2e2x(2) + 4e4x (4)

y’' = 4e2x + 16e4x

From right side,

y’’ - 6y’ + 8y = 4e2x + 16e4x - 6(2e2x + 4e4x) + 8(e2x + e4x)

= 4e2x + 8e2x - 12e2x + 16e4x + 8e4x - 24e4x

y’’ - 6y’ + 8y = 0

So, the given function is true.

Problem 5 :

For y = (x + 1) e5x, prove that y’’ - 10y’ + 25y = 0

Solution :

y = (x + 1) e5x

First derivative:    

Using product rule, we can find the derivative.

u = x + 1 and v = e5x

u' = 1 and v' = 5e5x

= (1) e5x + (x + 1) e5x (5)

y’ = e5x + 5(x + 1) e5x

= e5x + 5xe5x + 5e5x

= 5xe5x + 6e5x

y’ = e5x (5x + 6)

Second derivative:

u = 5x + 6 and v = e5x

u' = 5 and v' = 5e5x

y’’ = e5x (5) + (5x + 6) e5x (5)

= 5e5x + 5e5x (5x + 6)

= 5e5x + 25xe5x + 30e5x

= 25xe5x + 35e5x

y’’ = e5x (25x + 35)

From right side,

y’’ - 10y’ + 25y

= 25xe5x + 35e5x - 10 (5xe5x + 6e5x) + 25((x + 1) e5x)

= 25xe5x + 35e5x - 50xe5x - 60

e5x + 25xe5x + 25e5x

y’’ - 10y’ + 25y = 0   

So, the given function is true.

Problem 6 :

For y = A + Be-4x, prove that y’’ + 4y’ = 0

Solution :

y = A + Be-4x

First derivative :

y' = A + Be-4x (-4)

= (0) + Be-4x (-4)

y’ = -4Be-4x

Second derivative :

y’’ = -4 Be-4x

= -4Be-4x (-4)

y’’ = 16Be-4x

From right side,

y’’ + 4y’ = 16Be-4x + 4(-4Be-4x)

= 16Be-4x - 16Be-4x

y’’ + 4y’ = 0

So, the given function is true.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More