PRODUCT RULE FOR DERIVATIVES

To find the derivation of one function divided by the another function, we use the quotient rule follows.

d(f(x) g(x)) = f(x) g'(x) + f'(x) g(x)

Differentiate on paper without simplification:

Problem 1 :

(x + 2) (x² - 2x + 7)

Solution :

f(x) = x + 2, f’(x) = 1

g(x) = x² - 2x + 7, g’(x) = 2x - 2

d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)

= 1(x² - 2x + 7) + (x + 2) (2x - 2)

x² - 2x + 7 + 2x2 - 2x + 4x - 4

= x² - 2x + 7 + 2x2 + 2x - 4

= 3x2 + 3

Problem 2 :

(1 - x³) (7x + 4)

Solution :

f(x) = 1 - x³, f’(x) = -3x²

g(x) = 7x + 4, g’(x) = 7

d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)

= -3x² (7x + 4) + (1 - x³) (7)

= -21x3 - 12x2 + 7 - 7x³

= -28x3 - 12x2 + 7

Problem 3 :

(3x - 5) (x³ + 2x² - 8)

Solution :

f(x) = 3x - 5 ,f’(x) = 3

g(x) = x³ + 2x² - 8, g’(x) = 3x² + 4x

d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)

= 3(x³ + 2x² - 8) + (3x - 5) (3x² + 4x)

= 3x³ + 6x² - 24 + 9x3 + 12x2 - 15x2 - 20x

= 12x3 + 3x2 - 20x - 24

Problem 4 :

(x² - 2) (5x - x³)

Solution :

f(x) = x² - 2, f’(x) = 2x

g(x) = 5x - x³, g’(x) = 5 - 3x²

d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)

= 2x (5x - x³) + (x² - 2) (5 - 3x²)

= 10x2 - 2x3 + 5x2 - 3x4 - 10 + 6x2

= - 3x- 2x3 + 16x2 + 5x2 - 10

= - 3x- 2x3 + 21x2 - 10

Problem 5 :

(x² + 3x - 1) (x³ - 4x + 7)

Solution :

f(x) = x² + 3x - 1, f’(x) = 2x + 3

g(x) = x³ - 4x + 7, g’(x) = 3x² - 4

d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)

= (2x + 3) (x³ - 4x + 7) + (x² + 3x - 1) (3x² - 4)

= 2x4 - 8x + 14x + 3x3 - 12x + 21 + 3x4 - 4x2 + 9x3 - 12x - 3x2 + 4 

= 7x4 + 12x3 - x2 - 18x + 25

Problem 6 :

(x³ - 2x + 8) (6 - 5x)

Solution :

f(x) = x³ - 2x + 8, f’(x) = 3x² - 2

g(x) = 6 - 5x, g’(x) = -5

d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)

= (3x² - 2) (6 - 5x) + (x³ - 2x + 8) (-5)

= 18x2 - 15x3 - 12 + 10x - 5x3 + 10x - 40

= 18x2 - 20x3 + 20x - 52

= - 20x+ 18x2 + 20x - 52

Problem 7 :

(8x² - 5x) (13x² - 4)

Solution :

f(x) = 8x² - 5x, f’(x) = 16x - 5

g(x) = 13x² - 4, g’(x) = 26x

d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)

= (16x - 5) (13x² - 4) + (8x² - 5x) (26x)

= 208x2 - 64x - 45x2 + 20 + 208x3 - 130x

= 208x3 - 163x2 - 194x + 20

Problem 8 :

(x5 - 2x³) (7x² + x - 8)

Solution :

f(x) = x5 - 2x³, f’(x) = 5x4 - 6x²

g(x) = 7x² + x - 8, g’(x) = 14x + 1

d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)

= (5x4 - 6x2) (7x² + x - 8) + (x5 - 2x3) (14x + 1)

= 35x6 + 5x5 - 40x4 - 42x4 - 6x3 + 48x2 + 14x6 + x5 - 28x4 - 2x3

= 49x6 + 6x5 - 110x4 - 4x3 + 48x2

Problem 9 :

(3 - x³) (8x + 1)

Solution :

f(x) = 3 - x³, f’(x) = -3x²

g(x) = 8x + 1, g’(x) = 8

d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)

= (-3x²) (8x + 1) + (3 - x³) (8)

= - 24x3 - 3x2 + 24 - 8x3

= - 32x3 - 3x2 + 24 

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More