To find the derivation of one function divided by the another function, we use the quotient rule follows.
Differentiate on paper without simplification:
Problem 1 :
(x + 2) (x² - 2x + 7)
Solution :
f(x) = x + 2, f’(x) = 1
g(x) = x² - 2x + 7, g’(x) = 2x - 2
d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)
= 1(x² - 2x + 7) + (x + 2) (2x - 2)
= x² - 2x + 7 + 2x2 - 2x + 4x - 4
= x² - 2x + 7 + 2x2 + 2x - 4
= 3x2 + 3
Problem 2 :
(1 - x³) (7x + 4)
Solution :
f(x) = 1 - x³, f’(x) = -3x²
g(x) = 7x + 4, g’(x) = 7
d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)
= -3x² (7x + 4) + (1 - x³) (7)
= -21x3 - 12x2 + 7 - 7x³
= -28x3 - 12x2 + 7
Problem 3 :
(3x - 5) (x³ + 2x² - 8)
Solution :
f(x) = 3x - 5 ,f’(x) = 3
g(x) = x³ + 2x² - 8, g’(x) = 3x² + 4x
d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)
= 3(x³ + 2x² - 8) + (3x - 5) (3x² + 4x)
= 3x³ + 6x² - 24 + 9x3 + 12x2 - 15x2 - 20x
= 12x3 + 3x2 - 20x - 24
Problem 4 :
(x² - 2) (5x - x³)
Solution :
f(x) = x² - 2, f’(x) = 2x
g(x) = 5x - x³, g’(x) = 5 - 3x²
d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)
= 2x (5x - x³) + (x² - 2) (5 - 3x²)
= 10x2 - 2x3 + 5x2 - 3x4 - 10 + 6x2
= - 3x4 - 2x3 + 16x2 + 5x2 - 10
= - 3x4 - 2x3 + 21x2 - 10
Problem 5 :
(x² + 3x - 1) (x³ - 4x + 7)
Solution :
f(x) = x² + 3x - 1, f’(x) = 2x + 3
g(x) = x³ - 4x + 7, g’(x) = 3x² - 4
d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)
= (2x + 3) (x³ - 4x + 7) + (x² + 3x - 1) (3x² - 4)
= 2x4 - 8x + 14x + 3x3 - 12x + 21 + 3x4 - 4x2 + 9x3 - 12x - 3x2 + 4
= 7x4 + 12x3 - x2 - 18x + 25
Problem 6 :
(x³ - 2x + 8) (6 - 5x)
Solution :
f(x) = x³ - 2x + 8, f’(x) = 3x² - 2
g(x) = 6 - 5x, g’(x) = -5
d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)
= (3x² - 2) (6 - 5x) + (x³ - 2x + 8) (-5)
= 18x2 - 15x3 - 12 + 10x - 5x3 + 10x - 40
= 18x2 - 20x3 + 20x - 52
= - 20x3 + 18x2 + 20x - 52
Problem 7 :
(8x² - 5x) (13x² - 4)
Solution :
f(x) = 8x² - 5x, f’(x) = 16x - 5
g(x) = 13x² - 4, g’(x) = 26x
d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)
= (16x - 5) (13x² - 4) + (8x² - 5x) (26x)
= 208x2 - 64x - 45x2 + 20 + 208x3 - 130x
= 208x3 - 163x2 - 194x + 20
Problem 8 :
(x5 - 2x³) (7x² + x - 8)
Solution :
f(x) = x5 - 2x³, f’(x) = 5x4 - 6x²
g(x) = 7x² + x - 8, g’(x) = 14x + 1
d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)
= (5x4 - 6x2) (7x² + x - 8) + (x5 - 2x3) (14x + 1)
= 35x6 + 5x5 - 40x4 - 42x4 - 6x3 + 48x2 + 14x6 + x5 - 28x4 - 2x3
= 49x6 + 6x5 - 110x4 - 4x3 + 48x2
Problem 9 :
(3 - x³) (8x + 1)
Solution :
f(x) = 3 - x³, f’(x) = -3x²
g(x) = 8x + 1, g’(x) = 8
d/dx (f(x) · g(x)) = f’(x) · g(x) + f(x) · g’(x)
= (-3x²) (8x + 1) + (3 - x³) (8)
= - 24x3 - 3x2 + 24 - 8x3
= - 32x3 - 3x2 + 24
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM