PROBLEMS ON SIMPLIFYING RATIONAL EXPRESSIONS

To simplify the rational expressions, we have to follow the steps given below.

Step 1 :

Incase we see quadratic polynomial using the method of factoring or using algebraic identities, we have to write into product of linear factors.

Incase we see cubic polynomial or the polynomial which is having highest exponent more than 3, we have to use synthetic division to decompose into linear factors or using the algebraic identity.

Step 2 :

Cancel the common factors in the numerator and denominator.

Step 3 :

Write the rest of the factors.

Simplify the rational expressions given below.

Problem 1 :

Solution :

Numerator :

9 - y2 = 32 - y2

= (3 + y)(3 - y)

Denominator :

y+ 2y - 15 = y+ 5y - 3y - 15

= y(y + 5) - 3(y + 5)

= (y + 5)(y - 3)

Numerator / denominator = (3 + y)(3 - y) / (y + 5)(y - 3)

= -(3 + y)(y - 3) / (y + 5) (y - 3)

= - (3 + y) / (y + 5)


Problem 2 :

Solution :

Numerator :

3x3 + 18x2 - 21x

Factoring 3x from all, we get

= 3x (x2 + 6x - 7)

= 3x (x + 7)(x - 1)

Denominator :

x3 + 5x2 - 14x 

Factoring x from all terms, we get

= x(x2 + 5x - 14)

= x(x2 + 7x - 2x - 14)

= x [x (x + 7) - 2(x + 7)]

= x(x - 2) (x + 7)

Numerator / denominator = 3x (x + 7)(x - 1) / x(x - 2) (x + 7)

= 3(x - 1) / (x - 2)

Problem 3 :

Solution :

Numerator :

2x2 - 18x

Factoring 2x, we get

= 2x (x - 9)

Denominator :

4x3 - 32x2 - 36x

Factoring 4x, we get

= 4x(x2 - 8x - 9)

= 4x(x - 9)(x + 1)

Numerator / denominator = 2x (x - 9) / 4x(x - 9)(x + 1)

= 1 / 2(x + 1)

Problem 4 :

Solution :

Numerator :

5x2 - 11x + 2

5x2 - 10x - 1x + 2

= 5x (x - 2) - 1(x - 2)

= (5x - 1)(x - 2)

Denominator :

5x2 - 7x - 6

= 5x2 - 10x + 3x - 6

= 5x(x - 2) + 3(x - 2)

= (5x + 3) (x - 2)

Numerator / denominator = (5x - 1)(x - 2) / (5x + 3) (x - 2)

= (5x - 1)(5x + 3)

Problem 5 :

Solution :

Numerator :

2x2 - 7x + 3

= 2x2 - 6x - 1x + 3

= 2x (x - 3) - 1(x - 3)

= (2x - 1)(x - 3)

Denominator :

2x2 + 9x - 5

= 2x2 + 10x - 1x - 5

= 2x(x + 5) - 1(x + 5)

= (2x - 1) (x + 5)

Numerator / denominator =  (2x - 1)(x - 3) /  (2x - 1) (x + 5)

= (x - 3) / (x + 5)

Problem 6 :

Solution :

Numerator :

x2 + 2x - 24

x2 + 6x - 4x - 24

= x(x + 6) - 4(x + 6)

= (x + 6)(x - 4)

Denominator :

12 - 4x - x2

= -(x2+ 4x - 12)

= - (x + 6)(x - 2)

Numerator / Denominator = (x + 6)(x - 4) / [- (x + 6)(x - 2)]

= - (x - 4) / (x - 2)

Problem 7 :

Solution :

Numerator :

2x2 - 8

Factoring 2,

2(x2 - 4)

2(x2 - 22)

= 2(x + 2) (x - 2)

Denominator :

x2 + 4x - 12

= x2 + 6x - 2x - 12

= x(x + 6) - 2(x + 6)

= (x - 2)(x + 6)

Numerator / denominator = 2(x + 2) (x - 2) / (x - 2)(x + 6)

= 2 (x + 2) / (x + 6)

Problem 8 :

Solution :

Numerator :

2x2 - 9x + 7

= 2x2 - 2x - 7x + 7

= 2x (x - 1) - 7(x - 1)

= (2x - 7)(x - 1)

Denominator :

x2 + 2x - 3

x2 + 3x - 1x - 3

= x(x + 3) - 1(x + 3)

= (x - 1) (x + 3)

Numerator / denominator = (2x - 7)(x - 1) / (x - 1) (x + 3)

= (2x - 7) / (x + 3)

Problem 9 :

Solution :

Numerator :

8x2 - 14x + 6

= 8x2 - 8x - 6x + 6

= 8x

Factor 8x from the first two terms and factoring -6 from last two terms.

= 8x(x - 1) - 6(x - 1)

= (x - 1) (8x - 6)

= 2x(4x - 3) (x - 1)

Denominator :

(4x - 3)

Numerator / denominator = 2x(4x - 3) (x - 1) / (4x - 3)

= 2x (x - 1)

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More