Problem 1 :
Find constants a, b and c given that
2x2 + 4x + 5 = ax2 + [2b - 6]x + c for all x
Solution :
2x2 + 4x + 5 = ax2 + [2b - 6]x + c
Equating the coefficients of x2.
2 = a
Equating the coefficients of x.
4 = 2b - 6
4 + 6 = 2b
10 = 2b
Dividing 2 on each sides.
5 = b
Equating the constants terms.
5 = c
So, the values of a, b and c is 2, 5 and 5.
Problem 2 :
2x3 - x2 + 6 = (x - 1)2 (2x + a) + bx + c for all x.
Solution :
Given, 2x3 - x2 + 6 = (x - 1)2 (2x + a) + bx + c
2x3 - x2 + 6 = x2 + 1 - 2(x)(1) (2x + a) + bx + c
2x3 - x2 + 6 = (x2 + 1 - 2x) (2x + a) + bx + c
2x3 - x2 + 6 = 2x3 + ax2 + 2x + a - 4x2 - a2x + bx + c
Equating the coefficients of x2.
-1 = a - 4
-1 + 4 = a
3 = a
Equating the coefficients of x.
0 = 2 - 2a + b
0 = 2 - 2(3) + b
0 = 2 - 6 + b
0 = -4 + b
4 = b
Equating the constants terms.
6 = a + c
6 = 3 + c
6 - 3 = c
3 = c
So, the values of a, b and c is 3, 4 and 3.
Find a and b if :
Problem 3 :
z4 + 4 = (z2 + az + 2) (z2 + bz + 2) for all z.
Solution :
z4 + 4 = (z2 + az + 2) (z2 + bz + 2)
Adding and subtracting 4z2 on left sides.
z4 + 4z2 + 4 - 4z2 = (z2 + az + 2) (z2 + bz + 2)
(z2 + 2)2 - 4z2 = (z2 + az + 2) (z2 + bz + 2)
(z2 + 2)2 - (2z)2 = (z2 + az + 2) (z2 + bz + 2)
((z2 + 2) - 2z) ((z2 + 2) + 2z) = (z2 + az + 2) (z2 + bz + 2)
(z2 + 2 - 2z) (z2 + 2 + 2z) = (z2 + az + 2) (z2 + bz + 2)
z2 + 2 - 2z = z2 + az + 2
Equating the coefficients of z.
-2 = a
z2 + 2 + 2z = z2 + bz + 2
Equating the coefficients of z.
2 = b
So, the values of a and b is -2 and 2.
Problem 4 :
2z4 + 5z3 + 4z2 + 7z + 6 = (z2 + az + 2) (2z2 + bz + 3) for all z.
Solution :
2z4 + 5z3 + 4z2 + 7z + 6 = (z2 + az + 2) (2z2 + bz + 3)
(z2 + 3z + 2) (2z2 - z + 3) = (z2 + az + 2) (2z2 + bz + 3)
z2 + 3z + 2 = z2 + az + 2
Equating the coefficients of z.
3 = a
2z2 - z + 3 = 2z2 + bz + 3
Equating the coefficients of z.
-1 = b
Problem 5 :
Show that z4 + 64 can be factorised into two real quadratic factors of the form z2 + az + 8 and z2 + bz + 8, but cannot be factorised into two real quadratic factors of the form z2 + az + 16 and z2 + bz + 4.
Solution :
z4 + 64 = (z2 + az + 8) (z2 + bz + 8)
z4 + 16z2 + 64 - 16z2 = (z2 + az + 8) (z2 + bz + 8)
(z2 + 8)2 - 16z2 = (z2 + az + 8) (z2 + bz + 8)
(z2 + 8)2 - (4z)2 = (z2 + az + 8) (z2 + bz + 8)
(z2 - 4z + 8) (z2 + 4z + 8) = (z2 + az + 8) (z2 + bz + 8)
Equating the coefficients of z.
z2 - 4z + 8 = z2 + az + 8
-4 = a
Equating the coefficients of z.
z2 + 4z + 8 = z2 + bz + 8
4 = b
Hence, z4 + 64 can be factorized into z2 + az + 16 and z2 + bz + 4.
z4+ 64 = (z2 + az + 16) (z2 + bz + 4)
Hence, z4 + 64 can not be factorized into z2 + az + 16 and z2 + bz + 4. There are no solution.
Problem 6 :
Find real numbers a and b such that
x4 - 4x2 - 8x - 4 = (x2 + ax + 2) (x2 + bx - 2)
and hence solve the equation. x4 + 8x = 4x2 + 4.
Solution :
x4 - 4x2 - 8x - 4 = (x2 + ax + 2) (x2 + bx - 2)
Factorise the expression.
x4 - 4x2 - 8x - 4 = (x2 - 2x + 2) (x2 + 2x - 2)
(x2 - 2x + 2) (x2 + 2x - 2) = (x2 + ax + 2) (x2 + bx - 2)
(x2 - 2x + 2) = (x2 + ax + 2)
Equating the coefficients of x.
-2 = a
(x2 + 2x - 2) = (x2 + bx - 2)
Equating the coefficients of x.
2 = b
So, the values of a and b is -2 and 2.
Given, equation is x4 + 8x = 4x2 + 4
x4 - 4x2 + 8x - 4 = 0
(x2 + 2x - 2) (x2 - 2x + 2 ) = 0
x2 + 2x - 2 = 0
a = 1, b = 2 and c = -2
Using quadratic formula.
b2- 4ac = (2)2 - 4(1)(-2)
= 4 + 8
= 12
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM