PROBLEMS ON ADDING AND SUBTRACTING POLYNOMIALS

If P(x) = x3 + 2x2 – 4x + 1, Q(x) = x2 + 3x – 2 and R(x) = x3 + 3x – 1, determine each of the following.

Problem 1 :

P(x) + Q(x)

Solution :

Given, P(x) = x3 + 2x2 – 4x + 1

Q(x) = x2 + 3x – 2

P(x) + Q(x) = [x3 + 2x2 – 4x + 1] + [x2 + 3x – 2]

= x3 + 2x2 – 4x + 1 + x2 + 3x – 2

By combining like terms,

= x3 + 2x2 + x2 – 4x + 3x + 1 – 2

= x3 + 3x2 – x - 1

Problem 2 :

P(x) + R(x)

Solution :

Given, P(x) = x3 + 2x2 – 4x + 1

R(x) = x3 + 3x – 1

P(x) + R(x) = [x3 + 2x2 – 4x + 1] + [x3 + 3x – 1]

= x3 + 2x2 – 4x + 1 + x3 + 3x – 1

By combining like terms,

= x3 + x3 + 2x2 – 4x + 3x

= 2x3 + 2x2 – x

Problem 3 :

P(x) - Q(x)

Solution :

Given, P(x) = x3 + 2x2 – 4x + 1

Q(x) = x2 + 3x – 2

P(x) - Q(x) = [x3 + 2x2 – 4x + 1] - [x2 + 3x – 2]

= x3 + 2x2 – 4x + 1 - x2 - 3x + 2

By combining like terms,

= x3 + 2x2 - x2 – 4x - 3x + 1 + 2

= x3 + x2 – 7x + 3

Problem 4 :

P(x) - R(x)

Solution :

Given, P(x) = x3 + 2x2 – 4x + 1

R(x) = x3 + 3x – 1

P(x) - R(x) = [x3 + 2x2 – 4x + 1] - [x3 + 3x – 1]

= x3 + 2x2 – 4x + 1 - x3 - 3x + 1

By combining like terms,

= 2x2 – 4x - 3x + 1 + 1

= 2x2 - 7x + 2

Problem 5 :

R(x) - P(x)

Solution :

Given, R(x) = x3 + 3x – 1

P(x) = x3 + 2x2 – 4x + 1

R(x) - P(x) = [x3 + 3x – 1] – [x3 + 2x2 – 4x + 1]

= x3 + 3x – 1 - x3 - 2x2 + 4x – 1

By combining like terms,

= 3x + 4x - 2x2 - 1 - 1

= -2x2 + 7x - 2

Problem 6 :

P(x) + Q(x) + R(x)

Solution :

Given, P(x) = x3 + 2x2 – 4x + 1

Q(x) = x2 + 3x – 2

R(x) = x3 + 3x – 1

P(x) + Q(x) + R(x) = [x3 + 2x2 – 4x + 1] + [x2 + 3x – 2] + [x3 + 3x – 1]

= x3 + 2x2 – 4x + 1 + x2 + 3x – 2 + x3 + 3x - 1

By combining like terms,

= x3 + x+ 2x2 + x2 – 4x + 3x + 3x + 1 – 2 - 1

= 2x3 + 3x2 + 2x - 2

Problem 7 :

P(x) - Q(x) + R(x)

Solution :

Given, P(x) = x3 + 2x2 – 4x + 1

Q(x) = x2 + 3x – 2

R(x) = x3 + 3x – 1

P(x) - Q(x) + R(x) = [x3 + 2x2 – 4x + 1] - [x2 + 3x – 2] + [x3 + 3x – 1]

= x3 + 2x2 – 4x + 1 - x2 - 3x + 2 + x3 + 3x - 1

By combining like terms,

= x3  + x3 + 2x2 - x2  - 4x - 3x + 3x + 1 + 2 - 1

= 2x3 + x2– 4x + 2

Problem 8 :

P(x) - Q(x) – R(x)

Solution :

Given, P(x) = x3 + 2x2 – 4x + 1

Q(x) = x2 + 3x – 2

R(x) = x3 + 3x – 1

P(x) - Q(x) - R(x) = [x3 + 2x2 – 4x + 1] - [x2 + 3x – 2] - [x3 + 3x – 1]

= x3 + 2x2 – 4x + 1 - x2 - 3x + 2 - x3 - 3x + 1

By combining like terms,

= x3 - x+ 2x2 - x2 – 4x - 3x - 3x + 1 + 2 + 1

= x2 - 10x + 4

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More