PROBLEMS INVOLVING SQUARE ROOTS FOR DIGITAL SAT PRACTICE

Problem 1 :

If √x + √y = 4√y, where x > 0 and y > 0, what is x in terms of y?

A) 16y         B) 9y          C) 6y       D) 4y

Solution:

√x + √y = 4√y

√x = 4√y - √y

√x = 3√y

Taking square on both sides,

x = 9y

So, option (B) is correct.

Problem 2 :

g(x)=(x-1)(x-2)

What is one possible value of x for which the function g above is undefined?

Solution:

g(x)=(x-1)(x-2)

(x - 1)(x - 2) ≥ 0

x - 1 ≥ 0, x - 2 ≥ 0

x ≥ 1, x ≥ 2

x ≥ 2

(x - 1)(x - 2) ≤ 0

x - 1 ≤ 0, x - 2 ≤ 0

x ≤ 1, x ≤ 2

x ≤ 1

So, its defined on the interval (-∞, 1] ∪ [2, +∞).

So, its undefined when (1, 2).

One possible value of x as 1.5.

Problem 3 :

2x2-14a=3

If x > 0 and a = 2 in the equation above, what is the value of x?

A) 4           B) 5            C) 6         D) 7

Solution:

2x2-14a=32x2-142=32x2-14=6Taking square on both sides,2x2-14=362x2=50x2=502x2=25x=5

So, option (B) is correct.

Problem 4 :

For all x3, f(x)=x-32. If f(n)=3, what is the value of n?

Solution:

f(x)=x-323=n-32n-3=6n-32=62n-3=36n=36+3n=39

Problem 5 :

Which of the following is equal to 3x2 x3?A) xB) x94C) x136D) x3

Solution:

=3x2 x3=x23 x32=x23+32=x136

So, option (C) is correct.

Problem 6 :

x-6=2x2

What is the solution set for the equation above?

A) 92B) {8}C) 92,8D) {3,8}

Solution:

x-6=2x2(x-6)2=2x22x2-12x+36=2x4x2-12x+36=x22x2-12x+36=x2x2-24x+72-x=02x2-25x+72=02x2-16x-9x+72=02x(x-8)-9(x-8)=0(x-8)(2x-9)=0x=8,x=92

So, option (C) is correct.

Problem 7 :

If a = 5√2 and 2a = √2x, what is the value of x?

Solution:

2a = √2x

a = 5√2

2(5√2) = √2x

10√2 = √2x

Taking square on both sides,

(10√2)2 = (√2x)2

100 × 2 = 2x

200 = 2x

x = 100

Problem 8 :

14x7y=2w+19

The given equation relates the distinct positive real numbers w, x and y. Which equation correctly expresses w in terms of x and y?

A) w=xy-19B) w=xy2-19C) w=28x14y-19D) w=28x14y2-19

Solution:

14x7y=2w+192xy=2w+19w+19=122xyw+19=xyTaking square on both sides,w+192=xy2w+19=xy2w=xy2-19

So, option (C) is correct.

Problem 9 :

12x-2=3

If x ≠ 0, for what real value of x is the equation above true?

A) 150B) 122C) 225D) 12

Solution:

12x-2=312x=5Taking square on both sides,12x2=5212x=251=50xx=150

Problem 10 :

A right triangle has sides of length 2√2, 6√2 and √80 units. What is the area of the triangle, in square units?

A) 8√2 + √80      B) 12       C) 24√80          D) 24

Solution:

80=2×2×2×2×5=45Identify 80 as the hypotenuseArea of triangle=12×base×heightArea=12×62×22=12 square units

So, option (B) is correct.

Problem 11 :

If 3x3=72, what is the value of x?

A) 2       B) 3            C) 4      D) 5

Solution:

3x3=723x2×x=723xx=723xx2=7229x3=72x3=729x3=8x=38x=2

Problem 12 : 

g(x)=1x+10-9

For what value of x is the function g above undefined?

Solution:

Applying x = 71, we get

For x = 71, the function g(x) is undefined.

Problem 13 :

If 4+x=1+3, what is the value of x?

A) 0        B) 2           C) 6      D) 12

Solution:

4+x=1+34+x2=1+324+x=1+23+324+x=1+23+34+x=4+23x=4+23-4x=23Taking square on both sides,x2=232x=4×3x=12

So, option (D) is correct.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More