PRACTICE QUESTIONS ON MATRICES AND DETERMINANTS

Problem 1 :

If |adj(adj A)| = |A|9, then the order of the square matrix A is

(1)  3     (2)  4     (3)  2    (4)  5

Solution :

Given, |adj(adj A)| = |A|9

To find :

The order of the square matrix A.

Suppose that order of the square matrix A is n.

|adj A| = |A|n - 1

|adj(adj A)| = |adj A|n - 1

= |A|(n - 1)

|A|(n - 1)^2 = |A|9

(n - 1)2 = 9

Take square root on both sides.

√(n - 1)2  = √9

n - 1  = 3

n = 3 + 1

n = 4

The order of the square matrix A is 4.

So, option 2) is correct.

Problem 2 :

If A is a 3 × 3 non - singular matrix such that AAT = AT A and B = A-1 AT, then BBT

(1)  A     (2)  B     (3)  I3    (4)  BT

Solution :

Given, A is a 3 × 3 non - singular matrix such that AAT = AT A and B = A-1 AT

To find : BBT

BBT = (A-1 AT)(A-1 AT)T

= A-1 AT (A-1)T (AT)T

=  A-1 AT (A-1)T A

=   A-1 A AT (A-1)T 

=   A-1 A AT (AT)-1

=  AT (A-1)

 =  (AA-1)

= IT

= I

Hence, I = I3

So, option 3) is correct.

Problem 3 :

If A = 3 5 12, B = adj A and C = 3A, then |adj B|C =

(1)  1/3      (2)  1/9    (3)  1/4      (4)  1

Solution :

Given, A = 3 5 12 B = adj A and C = 3ATo find : |adj B|Cadj A = 2 -5 -13B = adj A = 2 -5 -13adj B = 3 5 12|adj B| = (6 - 5) = 1C = 3A=3 3 5 12C = 9 15 36|C| = 54 - 45|C|= 9|adj B|C = 19

Hence, the answer is 1/9.

So, option 2) is correct.

Problem 4 :

If A = 1 -2 14 = 6 0 06, then A = (1) 1 -2 14 (2) 1 2 -14 (3) 4 2 -11 (4) 4 -1 21

Solution :

Given, A = 1 -2 14 = 6 0 06To find : AConsider option 1) = 1 -2 14 × 1 -2 14= 1 - 2-2 - 81 + 4-2 + 16= -1 -10 514So, option 1) is not correct.Consider option 2) = 1 2 -14 × 1 -2 14= 1 + 2-2 + 8-1 + 42 + 16= 3 6 318So, option 2) is not correct.Consider option 3) = 4 2 -11 × 1 -2 14= 4 + 2-8 + 8-1 + 12 + 4= 6 0 06Hence, A = 4 2 -11So, option 3) is correct.

Problem 5 :

If A = 7 3 42, then 9I2 - A =

(1) A-1       (2) A-1/2      (3) 3A-1    (4)  2A-1

Solution :

Given, A = 7 3 42To find : 9I2 - A 9I2 - A = 91 0 01 - 7 3 42= 9 0 09 - 7 3 42= 9 - 70 - 30 - 49 - 29I2 - A = 2 -3 -47A-1 = 1|A| adj A|A| = 7342= (14 - 12)= 2adj A = 2 -3 -47A-1 = 12 2 -3 -472A-1 = 2 -3 -47

So, option 4) is correct.

Problem 6 :

If A = 2 0 15 and B = 1 4 20 then |adj (AB)| =

1) -40     2) -80     3) -60      4)-20

Solution :

Given, A = 2 0 15 and B = 1 4 20AB = 2 0 15 × 1 4 20= 2+ 0 8 + 01+ 10 4 + 0= 2 8 114adj (AB) = 4 -8 -112|adj (AB)| = 4-8-112= 8 - 88|adj (AB)| = -80

So, option 2) is correct.

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More