PRACTICE PROBLEMS ON QUADRATIC EQUATION FOR CA FOUNDATION

Problem 1 :

Solving equation x2 - (a + b)x + ab = 0, we find the value(s) of x ?

(a)  a      (b)  b   (c) a, b    (d)  None of these

Solution

Problem 2 :

Solving the equation z + √z = 6/25, then the value of z.

(a)  1/5      (b)  2/5     (c) 1/25      (d)  2/25

Solution

Problem 3 :

If

(x + 2)/(x - 2) - (x - 2)/(x + 2) = (x - 1)/(x + 3) - (x + 3)/(x - 3)

then the value of x are 

(a)  0, ±√6      (b)   0, ±√3     (c)  0, ±2√3       (d)  None

Solution

Problem 4 :

 Solve (x - 1/x)2 + 2(x + 1/x) = 7 1/4

Solution

Problem 5 :

The solution of the equation x - √(25 - x2) = 1

(a)  x = -3     (b)  x =  ±5     (c)  x = 1      (d)  x = 4

Solution

Problem 6 :

Solve the equation 

(6x + 2)/4 + (2x2 - 1)/(2x2 + 2) = (10x - 1)/4x we get roots as

(a)  x = -1     (b)  x =  ±1     (c)  x = 1      (d)  x = 0

Solution

Problem 7 :

If α and β  are the roots of

x2 = x + 1

then the value of α2/β - β2/α is

(a)  2√5      (b)  √5     (c)  3√5      (d)  -2√5

Solution

Problem 8 :

Solving x2 + y2 - 25 = 0 and x - y - 1 = 0, we get the roots 

(a)  ±3, ±4     (b)  ±2±3     (c)  0, 3,  4      (d)  0, -3, -4

Solution

Problem 9 :

The roots of a ax2 + bx + c = 0, are real and unequal if

(a) b2< 4ac     (b) b2 = 4ac   (c) b> 4ac    (d) None

Solution

Problem 10 :

α, β are the roots of the equation x2 - 5x + 6 = 0 the equation with the roots (α β + α + β) and (α β - α - β) is 

(a) x- 12x + 11 = 0    (b) 2x- 6x + 12 = 0

(c) x- 12x - 12 = 0    (d) None

Solution

Problem 11 :

If p ≠ q and p2 = 5p - 3 and q2 = 5q - 3 the equation having roots as p/q and q/p is

(a) x- 19x + 3 = 0    (b) 3x- 19x - 3 = 0

(c) 3x- 19x + 3 = 0    (d) 3x+ 19x + 3 = 0

Solution

Problem 12 :

Two numbers are such that thrice the smaller number exceeds twice the greater one by 18 and 1/3 of the smaller and 1/5 of the greater number are together 21. The numbers are -

(a) (45,36)     (b) (50, 38)      (c) (54,45)       (d) (55,41)

Solution

Problem 13 :

Two sides of an equilateral triangle are shortened by 12 units 13 units and 14 units respectively and a right angle is formed. The sides of the equilateral triangle is 

(a) 17 units      (b) 16 units      (c) 15 units      (d) 18 units

Solution

Problem 14 :

The hypotenuse of a right-angled triangle is 20 cm. The difference between its other two sides is 4cm. The sides are

(a) (11cm, 15cm)       (b) (12cm, 16cm)

(c) (20cm, 24cm)       (d) None of these

Solution

Problem 15 :

The sum of two numbers is 45 and the mean proportional between them is 18. The numbers are

(a) (15, 30)     (b) (32, 13)     (c) (36, 9)        (d) (25, 20)

Solution

Problem 16 :

Solving the equation 7√(x/(1-x) + 8√(1-x)/x = 15

(a) 64/113, 1/2       (b) 1/50, 1/65

(c) 49/50, 1/65      (d) 1/50, 64/65

Solution

Problem 17 :

Solving x3 + 9x2 - x - 9 = 0 we get the following roots

(a) ± 1,-9     (b) ±1, ±9      (c) ±1, 9      (d) None

Solution

Problem 18 :

The solution of the cubic equation x3 - 6x2 + 11 x - 6 = 0 is given by the triplet

(a) (-1, 1, -2)    (b) (1, 2, 3)      (c) (-2, 2, 3)     (d) (0, 4, -5)

Solution

Answer Key

1)  x = a and x = b

2)  t = 3/5 and t = 2/5

3)  x = 0 and x = ±√6

4)  x = 2 and x = 1/2, x = (-9 ± √65) / 4 

5)  x = 4 and x = -3

6)  x = 1 is one of the solution

7)  -2√5

8) (a)  ±3, ±4 

9)  b> 4ac

10) x2 - 12x + 11 = 0 

11)  3x2 - 19x + 3 = 0

12) the value of and y is 36 and 45.

13)  the required side is 17 units.

14)  12 and 16 are the required sides.

15)  x = 9 and x = 36

16)  x = 64/113 and x = 1/2

Find the values of k for which the given quadratic equations have real and equal roots.

Problem 1 :

4x2 + kx + 9 = 0

Solution

Problem 2 :

kx2 - 5x + k = 0

Solution

Problem 3 :

x2 - 7(3+k) + 4 - 2x(1 + k) = 0

Solution

Problem 4 :

Consider x2 - 2x + m = 0. Find the discriminant, hence find the values of m for which the equation has

a) repeated roots

b) 2 distinct real roots

c)  no real roots

Solution

Problem 5 :

If -4 is a root of the quadratic equation x2 + px - 4 = 0 and the quadratic equation 12x2 + 4px + k = 0 has equal roots, the find the value of k.

Solution

Problem 6 :

If the equation (1+k2)x2 + 2kqx + (q2 - p2) = 0 has equal roots, then shown that q2 = p2(1 + k2).

Solution

Answer Key

1)  the possible values of k are -12 and 12.

2) the values of k are -5/2 and 5/2.

3)  k = -3 and k = -6

4)  a) When m = 1, the quadratic equation will have repeated roots.

b) m < 1

c)  m > 1

5)  k = 25/3

6)  p2 (1 + k2) =  q2

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More