PRACTICE PROBLEMS ON DOUBLE ANGLE FORMULA TRIGONOMETRY

Double angle formula :

sin 2x = 2 sin x cos x

cos 2x = cos2 x - sin2 x

cos 2x = 1 - 2 sin2 x

cos 2x = 2cos2 x - 1

tan 2x = 2 tan x / (1 - tan2 x)

sin 2x = 2 tan x / (1 + tan2 x)

cos 2x = (1 - tan2 x) / (1 + tan2 x)

Use a double angle formula to rewrite the expression.

Problem 1 :

6 sin x cos x

Solution:

sin(2x) = 2 sin x cos x

6 sin x cos x = 3(2 sin x cos x)

= 3 sin 2x

Problem 2 :

5 - 10sin2x = 

Solution:

cos(2θ) = 1 − 2sin2θ

5 - 10sin2x = 5(1 - 2sin2x)

= 5 cos(2x)

Problem 3 :

cos2(5x) - sin2(5x) = 

Solution:

cos 2x = cos2x - sin2x

cos2(5x) - sin2(5x) = cos 2 (5x)

= cos 10x

Problem 4 :

14sin(3x) cos(3x) = 

Solution:

sin 2x = 2sinx cos x

14sin(3x) cos(3x) = 7(2sin(3x) cos(3x))

= 7(sin 6x)

Problem 5 :

If sin A = 1/3, what is the value of cos 2A?

a) -2/3     b) 2/3     c) -7/9        d) 7/9

Solution:

sin A = 1/3

cos 2A = 1 - 2sin2A

=1-2132=1-29=9-29cos 2A=79

So, option (d) is correct.

Problem 6 :

The expression 2sin2A + cos 2A is equivalent to

a) 1    b) 2      c) sin2A     d) -sin2A

Solution:

=2sin2A+cos 2A=21-cos 2A2+cos 2ACombine like terms,= 1-cos 2A+cos 2A= 1

So, option (a) is correct. 

Problem 7 :

If x is an acute angle, and cos x = 4/5, then cos 2x is equal to

a) 6/25       b) -1/25       c) 2/25       d) 7/25

Solution:

cos x=45cos 2x=2cos2x-1=2452-1=21625-1=3225-1=32-2525cos 2x=725

So, option (d) is correct.

Problem 8 :

The expression 2cos 𝜃sin 2𝜃 is equivalent to

a. csc 𝜃       b. sec 𝜃      c. cot 𝜃         d. sin 𝜃

Solution:

=2cos 𝜃sin 2𝜃=2cos 𝜃2 sin𝜃 cos𝜃=1sin𝜃=csc 𝜃

So, option (a) is correct.

Problem 9 :

The expression 1 - 2sin230° has the same value as

a. sin 60°        b. cos 60°        c. cos 15°       d. sin 15°

Solution:

sin2x = 1 − cos2x

= 1 - 2sin230°

= 1 - 2(1/2)2

= 1 - 2(1/4)

= 1/2

From the given options, cos 60° = 1/2

1 - 2sin230° = cos 60°

Problem 10 :

The expression cos2θ - cos 2θ is equivalent to

a. sin2θ      b. -sin2θ          c. cos2θ + 1         d. -cos2θ - 1

Solution:

= cos2θ - cos 2θ

= cos2θ - 2cos2θ - 1

= -cos2θ - 1

So, option (d) is correct.

Problem 11 :

If sin A = 2/3 where 0° < A < 90°, what is the value of sin 2A?

a. 253b. 259c. 459d. -459

Solution:

sin A = 2/3

opposite = 2

hypotenuse = 3

Adjacent = √5

cos A=53sin 2A=2sinA cos A=2×23×53sin 2A=459

So, option (c) is correct.

Problem 12 :

Given:

sin A=-35, 𝜋A3𝜋2cos B=1213, 3𝜋2B2𝜋

Solution:

a. sin(2B) 

sin(2B) = 2 sinB cosB

sin A=-35cos A=1-sin2A=1--352=1-925=1625cos A=45𝜋,3𝜋2is in third quadrant. so cos is negtive.cos A=-45cos B=1213sin B=1-cos2B=1-12132=1-144169=169-144169=25169sin B=5133𝜋2,2𝜋is in fourth quadrant. so sin is negtive.sin B=-513
sin(2B)=2-5131213sin(2B)=-120169

b. cos(2A)

cos(2A) = cos2A - sin2A

cos(2A)=-452--352=1625-925cos(2A)=725

c. tan(2B)

tan(2B)=2 tanB1-tan2Btan B=sin Bcos B=-513×1312tan B=-512tan(2B)=2-5121--5122=-561-25144=-56144-25144=-56119144=-56×144119tan(2B)=-120119

Recent Articles

  1. Finding Range of Values Inequality Problems

    May 21, 24 08:51 PM

    Finding Range of Values Inequality Problems

    Read More

  2. Solving Two Step Inequality Word Problems

    May 21, 24 08:51 AM

    Solving Two Step Inequality Word Problems

    Read More

  3. Exponential Function Context and Data Modeling

    May 20, 24 10:45 PM

    Exponential Function Context and Data Modeling

    Read More