Double angle formula :
sin 2x = 2 sin x cos x
cos 2x = cos2 x - sin2 x
cos 2x = 1 - 2 sin2 x
cos 2x = 2cos2 x - 1
tan 2x = 2 tan x / (1 - tan2 x)
sin 2x = 2 tan x / (1 + tan2 x)
cos 2x = (1 - tan2 x) / (1 + tan2 x)
Use a double angle formula to rewrite the expression.
Problem 1 :
6 sin x cos x
Solution:
sin(2x) = 2 sin x cos x
6 sin x cos x = 3(2 sin x cos x)
= 3 sin 2x
Problem 2 :
5 - 10sin2x =
Solution:
cos(2θ) = 1 − 2sin2θ
5 - 10sin2x = 5(1 - 2sin2x)
= 5 cos(2x)
Problem 3 :
cos2(5x) - sin2(5x) =
Solution:
cos 2x = cos2x - sin2x
cos2(5x) - sin2(5x) = cos 2 (5x)
= cos 10x
Problem 4 :
14sin(3x) cos(3x) =
Solution:
sin 2x = 2sinx cos x
14sin(3x) cos(3x) = 7(2sin(3x) cos(3x))
= 7(sin 6x)
Problem 5 :
If sin A = 1/3, what is the value of cos 2A?
a) -2/3 b) 2/3 c) -7/9 d) 7/9
Solution:
sin A = 1/3
cos 2A = 1 - 2sin2A
So, option (d) is correct.
Problem 6 :
The expression 2sin2A + cos 2A is equivalent to
a) 1 b) 2 c) sin2A d) -sin2A
Solution:
So, option (a) is correct.
Problem 7 :
If x is an acute angle, and cos x = 4/5, then cos 2x is equal to
a) 6/25 b) -1/25 c) 2/25 d) 7/25
Solution:
So, option (d) is correct.
Problem 8 :
a. csc 𝜃 b. sec 𝜃 c. cot 𝜃 d. sin 𝜃
Solution:
So, option (a) is correct.
Problem 9 :
The expression 1 - 2sin230° has the same value as
a. sin 60° b. cos 60° c. cos 15° d. sin 15°
Solution:
sin2x = 1 − cos2x
= 1 - 2sin230°
= 1 - 2(1/2)2
= 1 - 2(1/4)
= 1/2
From the given options, cos 60° = 1/2
1 - 2sin230° = cos 60°
Problem 10 :
The expression cos2θ - cos 2θ is equivalent to
a. sin2θ b. -sin2θ c. cos2θ + 1 d. -cos2θ - 1
Solution:
= cos2θ - cos 2θ
= cos2θ - 2cos2θ - 1
= -cos2θ - 1
So, option (d) is correct.
Problem 11 :
If sin A = 2/3 where 0° < A < 90°, what is the value of sin 2A?
Solution:
sin A = 2/3
opposite = 2
hypotenuse = 3
Adjacent = √5
So, option (c) is correct.
Problem 12 :
Given:
Solution:
a. sin(2B)
sin(2B) = 2 sinB cosB
b. cos(2A)
cos(2A) = cos2A - sin2A
c. tan(2B)
May 21, 24 08:51 PM
May 21, 24 08:51 AM
May 20, 24 10:45 PM